def tfrecord_pipeline(dspath, batch_size, num_threads, device="cpu", device_id=None, shard_id=0, num_shards=1, reader_name="Reader", seq=True, chroms=False, chroms_vlog=False, target=True, target_vlog=True, label=False, random_shuffle=True): pipe = Pipeline(batch_size=batch_size, num_threads=num_threads, device_id=device_id) feature_description = {} feature_description["seq"] = tfrec.VarLenFeature(tfrec.float32, -1.0) feature_description["label"] = tfrec.FixedLenFeature([], tfrec.int64, -1) feature_description["target"] = tfrec.FixedLenFeature([], tfrec.float32, -1.0) for ct in dspath["chromatin_tracks"]: feature_description[ct] = tfrec.VarLenFeature(tfrec.float32, -1.0) with pipe: inputs = fn.readers.tfrecord( name=reader_name, path=dspath['TFRecord'], index_path=dspath['TFRecord_idx'], features=feature_description, shard_id = shard_id, num_shards = num_shards, random_shuffle=random_shuffle, read_ahead=True, prefetch_queue_depth=20, pad_last_batch=True) if device=="gpu": inputs['seq'] = inputs['seq'].gpu() for ct in dspath["chromatin_tracks"]: inputs[ct] = inputs[ct].gpu() inputs['target'] = inputs['target'].gpu() inputs['label'] = inputs['label'].gpu() seqdata = fn.expand_dims(inputs['seq'], axes=1, device=device) seqdata = fn.reshape(seqdata, shape=(4, -1), device=device) chromsdata = fn.cat(*[fn.expand_dims(inputs[ct], axes=0, device=device) for ct in dspath["chromatin_tracks"]], axis=0, device=device) sample = [] if seq: sample.append(seqdata) if chroms: if chroms_vlog: sample.append(log(chromsdata + 1)) else: sample.append(chromsdata) if target: if target_vlog: sample.append(log(inputs['target'] + 1)) else: sample.append(inputs['target']) if label: sample.append(inputs['label']) pipe.set_outputs(*sample) return pipe
def pipeline_arithm_ops_cpu(source): data = fn.external_source(source=source, layout="HWC") processed = (data * 2, data + 2, data - 2, data / 2, data // 2, data ** 2, data == 2, data != 2, data < 2, data <= 2, data > 2, data >= 2, data & 2, data | 2, data ^ 2, dmath.abs(data), dmath.fabs(data), dmath.floor(data), dmath.ceil(data), dmath.pow(data, 2), dmath.fpow(data, 1.5), dmath.min(data, 2), dmath.max(data, 50), dmath.clamp(data, 10, 50), dmath.sqrt(data), dmath.rsqrt(data), dmath.cbrt(data), dmath.exp(data), dmath.exp(data), dmath.log(data), dmath.log2(data), dmath.log10(data), dmath.sin(data), dmath.cos(data), dmath.tan(data), dmath.asin(data), dmath.acos(data), dmath.atan(data), dmath.atan2(data, 3), dmath.sinh(data), dmath.cosh(data), dmath.tanh(data), dmath.asinh(data), dmath.acosh(data), dmath.atanh(data)) return processed
def test_arithm_ops_cpu(): pipe = Pipeline(batch_size=batch_size, num_threads=4, device_id=None) data = fn.external_source(source=get_data, layout="HWC") processed = [ data * 2, data + 2, data - 2, data / 2, data // 2, data**2, data == 2, data != 2, data < 2, data <= 2, data > 2, data >= 2, data & 2, data | 2, data ^ 2, dmath.abs(data), dmath.fabs(data), dmath.floor(data), dmath.ceil(data), dmath.pow(data, 2), dmath.fpow(data, 1.5), dmath.min(data, 2), dmath.max(data, 50), dmath.clamp(data, 10, 50), dmath.sqrt(data), dmath.rsqrt(data), dmath.cbrt(data), dmath.exp(data), dmath.exp(data), dmath.log(data), dmath.log2(data), dmath.log10(data), dmath.sin(data), dmath.cos(data), dmath.tan(data), dmath.asin(data), dmath.acos(data), dmath.atan(data), dmath.atan2(data, 3), dmath.sinh(data), dmath.cosh(data), dmath.tanh(data), dmath.asinh(data), dmath.acosh(data), dmath.atanh(data) ] pipe.set_outputs(*processed) pipe.build() for _ in range(3): pipe.run()
# Limit the range so we do not end with comparing just the infinities in results. def limited_range(*types): return [(-30, 30) for _ in types] def pow_range(*_): return [(-15, 15), (-4, 4)] def default_range(*types): return [None for _ in types] math_function_operations = [ ((lambda x: math.sqrt(x)), (lambda x: np.sqrt(x)), "sqrt", pos_range, 1e-6), ((lambda x: math.rsqrt(x)), (lambda x: 1.0 / np.sqrt(x)), "rsqrt", pos_range, 1e-5), ((lambda x: math.cbrt(x)), (lambda x: np.cbrt(x)), "cbrt", default_range, 1e-6), ((lambda x: math.exp(x)), (lambda x: np.exp(x)), "exp", limited_range, 1e-6), ((lambda x: math.log(x)), (lambda x: np.log(x)), "log", pos_range, 1e-6), ((lambda x: math.log2(x)), (lambda x: np.log2(x)), "log2", pos_range, 1e-6), ((lambda x: math.log10(x)), (lambda x: np.log10(x)), "log10", pos_range, 1e-6), ((lambda x: math.fabs(x)), (lambda x: np.fabs(x)), "fabs", default_range, 1e-6), ((lambda x: math.floor(x)), (lambda x: np.floor(x)), "floor", default_range, 1e-6), ((lambda x: math.ceil(x)), (lambda x: np.ceil(x)), "ceil", default_range, 1e-6), ((lambda x: math.sin(x)), (lambda x: np.sin(x)), "sin", default_range, 1e-6), ((lambda x: math.cos(x)), (lambda x: np.cos(x)), "cos", default_range, 1e-6), ((lambda x: math.tan(x)), (lambda x: np.tan(x)), "tan", default_range, 1e-6), ((lambda x: math.asin(x)), (lambda x: np.arcsin(x)), "asin", one_range, 1e-6), ((lambda x: math.acos(x)), (lambda x: np.arccos(x)), "acos", one_range, 1e-6), ((lambda x: math.atan(x)), (lambda x: np.arctan(x)), "atan", default_range, 1e-6), ((lambda x: math.sinh(x)), (lambda x: np.sinh(x)), "sinh", default_range, 1e-6), ((lambda x: math.cosh(x)), (lambda x: np.cosh(x)), "cosh", default_range, 1e-6), ((lambda x: math.tanh(x)), (lambda x: np.tanh(x)), "tanh", default_range, 1e-6), ((lambda x: math.asinh(x)), (lambda x: np.arcsinh(x)), "asinh", limited_range, 1e-6),