def test_s3_dataset(s3, paths, engine, df): # create a mocked out bucket here bucket = "testbucket" s3.create_bucket(Bucket=bucket) s3_paths = [] for path in paths: s3_path = f"s3://{bucket}/{path}" with fsspec.open(s3_path, "wb") as f: f.write(open(path, "rb").read()) s3_paths.append(s3_path) # create a basic s3 dataset dataset = nvt.Dataset(s3_paths) # make sure the iteration API works columns = mycols_pq if engine == "parquet" else mycols_csv gdf = cudf.concat(list(dataset.to_iter()))[columns] assert_eq(gdf.reset_index(drop=True), df.reset_index(drop=True)) cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"] cont_names = ["x", "y", "id"] label_name = ["label"] processor = nvt.Workflow(cat_names=cat_names, cont_names=cont_names, label_name=label_name) processor.add_feature([ops.FillMissing(), ops.Clip(min_value=0), ops.LogOp()]) processor.add_preprocess(ops.Normalize()) processor.add_preprocess(ops.Categorify(cat_cache="host")) processor.finalize() processor.update_stats(dataset)
def test_concatenate_dataframe(tmpdir, output_model): # we were seeing an issue in the rossmann workflow where we dropped certain columns, # https://github.com/NVIDIA/NVTabular/issues/961 df = _make_df({ "cat": ["aaaa", "bbbb", "cccc", "aaaa", "bbbb", "aaaa"], "cont": [0.0, 1.0, 2.0, 3.0, 4.0, 5], }) # this bug only happened with a dataframe representation: force this by using a lambda cats = ["cat"] >> ops.LambdaOp(lambda col: _hash_series(col) % 1000) conts = ["cont"] >> ops.Normalize() >> ops.FillMissing() >> ops.LogOp() dataset = Dataset(df) workflow = nvt.Workflow(cats + conts).fit_schema(dataset.infer_schema()) if output_model == "pytorch": model_info = { "cat": { "columns": ["cat"], "dtype": "int32" }, "cont": { "columns": ["cont"], "dtype": "float32" }, } else: model_info = None _verify_workflow_on_tritonserver(tmpdir, workflow, df, "test_concatenate_dataframe", output_model, model_info)
def test_log(tmpdir, df, dataset, gpu_memory_frac, engine, op_columns): cont_names = ["x", "y", "id"] log_op = ops.LogOp(columns=op_columns) columns_ctx = {} columns_ctx["continuous"] = {} columns_ctx["continuous"]["base"] = cont_names for gdf in dataset.to_iter(): new_gdf = log_op.apply_op(gdf, columns_ctx, "continuous") assert new_gdf[cont_names] == np.log(gdf[cont_names].astype(np.float32))
def test_target_encode(tmpdir, cat_groups, kfold, fold_seed): df = cudf.DataFrame({ "Author": list(string.ascii_uppercase), "Engaging-User": list(string.ascii_lowercase), "Cost": range(26), "Post": [0, 1] * 13, }) df = dask_cudf.from_cudf(df, npartitions=3) cat_names = ["Author", "Engaging-User"] cont_names = ["Cost"] label_name = ["Post"] processor = nvt.Workflow(cat_names=cat_names, cont_names=cont_names, label_name=label_name) processor.add_feature( [ops.FillMissing(), ops.Clip(min_value=0), ops.LogOp()]) processor.add_preprocess( ops.TargetEncoding( cat_groups, "Cost", # cont_target out_path=str(tmpdir), kfold=kfold, out_col="test_name", out_dtype="float32", fold_seed=fold_seed, drop_folds=False, # Keep folds to validate )) processor.finalize() processor.apply(nvt.Dataset(df), output_format=None) df_out = processor.get_ddf().compute(scheduler="synchronous") assert "test_name" in df_out.columns assert df_out["test_name"].dtype == "float32" if kfold > 1: # Cat columns are unique. # Make sure __fold__ mapping is correct if cat_groups == "Author": name = "__fold___Author" cols = ["__fold__", "Author"] else: name = "__fold___Author_Engaging-User" cols = ["__fold__", "Author", "Engaging-User"] check = cudf.io.read_parquet(processor.stats["te_stats"][name]) check = check[cols].sort_values(cols).reset_index(drop=True) df_out_check = df_out[cols].sort_values(cols).reset_index(drop=True) assert_eq(check, df_out_check)
def test_s3_dataset(s3_base, s3so, paths, datasets, engine, df): # Copy files to mock s3 bucket files = {} for i, path in enumerate(paths): with open(path, "rb") as f: fbytes = f.read() fn = path.split(os.path.sep)[-1] files[fn] = BytesIO() files[fn].write(fbytes) files[fn].seek(0) if engine == "parquet": # Workaround for nvt#539. In order to avoid the # bug in Dask's `create_metadata_file`, we need # to manually generate a "_metadata" file here. # This can be removed after dask#7295 is merged # (see https://github.com/dask/dask/pull/7295) fn = "_metadata" files[fn] = BytesIO() meta = create_metadata_file( paths, engine="pyarrow", out_dir=False, ) meta.write_metadata_file(files[fn]) files[fn].seek(0) with s3_context(s3_base=s3_base, bucket=engine, files=files): # Create nvt.Dataset from mock s3 paths url = f"s3://{engine}" if engine == "parquet" else f"s3://{engine}/*" dataset = nvt.Dataset(url, engine=engine, storage_options=s3so) # Check that the iteration API works columns = mycols_pq if engine == "parquet" else mycols_csv gdf = cudf.concat(list(dataset.to_iter()))[columns] assert_eq(gdf.reset_index(drop=True), df.reset_index(drop=True)) cat_names = ["name-cat", "name-string" ] if engine == "parquet" else ["name-string"] cont_names = ["x", "y", "id"] label_name = ["label"] conts = cont_names >> ops.FillMissing() >> ops.Clip( min_value=0) >> ops.LogOp() cats = cat_names >> ops.Categorify(cat_cache="host") processor = nvt.Workflow(conts + cats + label_name) processor.fit(dataset)
def test_target_encode(tmpdir, cat_groups, kfold, fold_seed, cpu): df = dispatch._make_df({ "Author": list(string.ascii_uppercase), "Engaging-User": list(string.ascii_lowercase), "Cost": range(26), "Post": [0, 1] * 13, }) if cpu: df = dd.from_pandas( df if isinstance(df, pd.DataFrame) else df.to_pandas(), npartitions=3) else: df = dask_cudf.from_cudf(df, npartitions=3) cont_names = ["Cost"] te_features = cat_groups >> ops.TargetEncoding( cont_names, out_path=str(tmpdir), kfold=kfold, out_dtype="float32", fold_seed=fold_seed, drop_folds=False, # Keep folds to validate ) cont_features = cont_names >> ops.FillMissing() >> ops.Clip( min_value=0) >> ops.LogOp() workflow = nvt.Workflow(te_features + cont_features + ["Author", "Engaging-User"]) df_out = workflow.fit_transform( nvt.Dataset(df)).to_ddf().compute(scheduler="synchronous") df_lib = dispatch.get_lib() if kfold > 1: # Cat columns are unique. # Make sure __fold__ mapping is correct if cat_groups == "Author": name = "__fold___Author" cols = ["__fold__", "Author"] else: name = "__fold___Author_Engaging-User" cols = ["__fold__", "Author", "Engaging-User"] check = df_lib.read_parquet(te_features.op.stats[name]) check = check[cols].sort_values(cols).reset_index(drop=True) df_out_check = df_out[cols].sort_values(cols).reset_index(drop=True) assert_eq(check, df_out_check, check_dtype=False)
def test_hugectr(tmpdir, df, dataset, output_format, engine, op_columns): cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"] cont_names = ["x", "y"] label_names = ["label"] # set variables nfiles = 10 ext = "" outdir = tmpdir + "/hugectr" os.mkdir(outdir) # process data processor = nvt.Workflow(cat_names=cat_names, cont_names=cont_names, label_name=label_names) processor.add_feature([ops.ZeroFill(columns=op_columns), ops.LogOp()]) processor.add_preprocess(ops.Normalize()) processor.add_preprocess(ops.Categorify()) processor.finalize() # Need to collect statistics first (for now) processor.update_stats(dataset) # Second "online" pass to write HugeCTR output processor.apply( dataset, apply_offline=False, record_stats=False, output_path=outdir, out_files_per_proc=nfiles, output_format=output_format, shuffle=False, ) # Check files ext = "" if output_format == "parquet": ext = "parquet" assert os.path.isfile(outdir + "/metadata.json") elif output_format == "hugectr": ext = "data" assert os.path.isfile(outdir + "/file_list.txt") for n in range(nfiles): assert os.path.isfile(os.path.join(outdir, str(n) + "." + ext))
def test_log(tmpdir, datasets, gpu_memory_frac, engine, op_columns): paths = glob.glob(str(datasets[engine]) + "/*." + engine.split("-")[0]) if engine == "parquet": df1 = cudf.read_parquet(paths[0])[mycols_pq] df2 = cudf.read_parquet(paths[1])[mycols_pq] else: df1 = cudf.read_csv(paths[0], header=False, names=allcols_csv)[mycols_csv] df2 = cudf.read_csv(paths[1], header=False, names=allcols_csv)[mycols_csv] df = cudf.concat([df1, df2], axis=0) df["id"] = df["id"].astype("int64") if engine == "parquet": columns = mycols_pq else: columns = mycols_csv cont_names = ["x", "y", "id"] data_itr = nvtabular.io.GPUDatasetIterator( paths, columns=columns, use_row_groups=True, gpu_memory_frac=gpu_memory_frac, names=allcols_csv, ) log_op = ops.LogOp(columns=op_columns) columns_ctx = {} columns_ctx["continuous"] = {} columns_ctx["continuous"]["base"] = cont_names for gdf in data_itr: new_gdf = log_op.apply_op(gdf, columns_ctx, "continuous") assert new_gdf[cont_names] == np.log(gdf[cont_names].astype( np.float32))
def test_dask_workflow_api_dlrm( client, tmpdir, datasets, freq_threshold, part_mem_fraction, engine, cat_cache, on_host, shuffle ): paths = glob.glob(str(datasets[engine]) + "/*." + engine.split("-")[0]) if engine == "parquet": df1 = cudf.read_parquet(paths[0])[mycols_pq] df2 = cudf.read_parquet(paths[1])[mycols_pq] elif engine == "csv": df1 = cudf.read_csv(paths[0], header=0)[mycols_csv] df2 = cudf.read_csv(paths[1], header=0)[mycols_csv] else: df1 = cudf.read_csv(paths[0], names=allcols_csv)[mycols_csv] df2 = cudf.read_csv(paths[1], names=allcols_csv)[mycols_csv] df0 = cudf.concat([df1, df2], axis=0) if engine == "parquet": cat_names = ["name-cat", "name-string"] else: cat_names = ["name-string"] cont_names = ["x", "y", "id"] label_name = ["label"] cats = cat_names >> ops.Categorify( freq_threshold=freq_threshold, out_path=str(tmpdir), cat_cache=cat_cache, on_host=on_host ) conts = cont_names >> ops.FillMissing() >> ops.Clip(min_value=0) >> ops.LogOp() workflow = Workflow(cats + conts + label_name, client=client) if engine in ("parquet", "csv"): dataset = Dataset(paths, part_mem_fraction=part_mem_fraction) else: dataset = Dataset(paths, names=allcols_csv, part_mem_fraction=part_mem_fraction) output_path = os.path.join(tmpdir, "processed") transformed = workflow.fit_transform(dataset) transformed.to_parquet(output_path=output_path, shuffle=shuffle) # Can still access the final ddf if we didn't shuffle if not shuffle: result = transformed.to_ddf().compute() assert len(df0) == len(result) assert result["x"].min() == 0.0 assert result["x"].isna().sum() == 0 assert result["y"].min() == 0.0 assert result["y"].isna().sum() == 0 # Check category counts cat_expect = df0.groupby("name-string").agg({"name-string": "count"}).reset_index(drop=True) cat_result = ( result.groupby("name-string").agg({"name-string": "count"}).reset_index(drop=True) ) if freq_threshold: cat_expect = cat_expect[cat_expect["name-string"] >= freq_threshold] # Note that we may need to skip the 0th element in result (null mapping) assert_eq( cat_expect, cat_result.iloc[1:] if len(cat_result) > len(cat_expect) else cat_result, check_index=False, ) else: assert_eq(cat_expect, cat_result) # Read back from disk df_disk = dask_cudf.read_parquet(output_path, index=False).compute() for col in df_disk: assert_eq(result[col], df_disk[col]) else: df_disk = dask_cudf.read_parquet(output_path, index=False).compute() assert len(df0) == len(df_disk)
def test_gpu_preproc(tmpdir, df, dataset, dump, gpu_memory_frac, engine, preprocessing): cat_names = ["name-cat", "name-string" ] if engine == "parquet" else ["name-string"] cont_names = ["x", "y", "id"] label_name = ["label"] processor = nvt.Workflow(cat_names=cat_names, cont_names=cont_names, label_name=label_name) processor.add_feature( [ops.FillMedian(), ops.LogOp(preprocessing=preprocessing)]) processor.add_preprocess(ops.Normalize()) processor.add_preprocess(ops.Categorify()) processor.finalize() processor.update_stats(dataset) if dump: config_file = tmpdir + "/temp.yaml" processor.save_stats(config_file) processor.clear_stats() processor.load_stats(config_file) def get_norms(tar: cudf.Series): ser_median = tar.dropna().quantile(0.5, interpolation="linear") gdf = tar.fillna(ser_median) gdf = np.log(gdf + 1) return gdf # Check mean and std - No good right now we have to add all other changes; Zerofill, Log x_col = "x" if preprocessing else "x_LogOp" y_col = "y" if preprocessing else "y_LogOp" assert math.isclose(get_norms(df.x).mean(), processor.stats["means"][x_col], rel_tol=1e-2) assert math.isclose(get_norms(df.y).mean(), processor.stats["means"][y_col], rel_tol=1e-2) assert math.isclose(get_norms(df.x).std(), processor.stats["stds"][x_col], rel_tol=1e-2) assert math.isclose(get_norms(df.y).std(), processor.stats["stds"][y_col], rel_tol=1e-2) # Check median (TODO: Improve the accuracy) x_median = df.x.dropna().quantile(0.5, interpolation="linear") y_median = df.y.dropna().quantile(0.5, interpolation="linear") id_median = df.id.dropna().quantile(0.5, interpolation="linear") assert math.isclose(x_median, processor.stats["medians"]["x"], rel_tol=1e1) assert math.isclose(y_median, processor.stats["medians"]["y"], rel_tol=1e1) assert math.isclose(id_median, processor.stats["medians"]["id"], rel_tol=1e1) # Check that categories match if engine == "parquet": cats_expected0 = df["name-cat"].unique().values_host cats0 = get_cats(processor, "name-cat") assert cats0.tolist() == [None] + cats_expected0.tolist() cats_expected1 = df["name-string"].unique().values_host cats1 = get_cats(processor, "name-string") assert cats1.tolist() == [None] + cats_expected1.tolist() # Write to new "shuffled" and "processed" dataset processor.write_to_dataset(tmpdir, dataset, nfiles=10, shuffle=True, apply_ops=True) processor.create_final_cols() # if preprocessing if not preprocessing: for col in cont_names: assert f"{col}_LogOp" in processor.columns_ctx["final"]["cols"][ "continuous"] dlc = torch_dataloader.DLCollator(preproc=processor, apply_ops=False) data_files = [ torch_dataloader.FileItrDataset(x, use_row_groups=True, gpu_memory_frac=gpu_memory_frac, names=allcols_csv) for x in glob.glob(str(tmpdir) + "/*.parquet") ] data_itr = torch.utils.data.ChainDataset(data_files) dl = torch_dataloader.DLDataLoader(data_itr, collate_fn=dlc.gdf_col, pin_memory=False, num_workers=0) len_df_pp = 0 for chunk in dl: len_df_pp += len(chunk[0][0]) dataset = Dataset(glob.glob(str(tmpdir) + "/*.parquet"), part_mem_fraction=gpu_memory_frac) x = processor.ds_to_tensors(dataset.to_iter(), apply_ops=False) num_rows, num_row_groups, col_names = cudf.io.read_parquet_metadata( str(tmpdir) + "/_metadata") assert len(x[0]) == len_df_pp itr_ds = torch_dataloader.TensorItrDataset([x[0], x[1], x[2]], batch_size=512000) count_tens_itr = 0 for data_gd in itr_ds: count_tens_itr += len(data_gd[1]) assert data_gd[0].shape[1] > 0 assert data_gd[1].shape[1] > 0 assert len_df_pp == count_tens_itr
def test_dask_workflow_api_dlrm(dask_cluster, tmpdir, datasets, freq_threshold, part_mem_fraction, engine): paths = glob.glob(str(datasets[engine]) + "/*." + engine.split("-")[0]) if engine == "parquet": df1 = cudf.read_parquet(paths[0])[mycols_pq] df2 = cudf.read_parquet(paths[1])[mycols_pq] elif engine == "csv": df1 = cudf.read_csv(paths[0], header=0)[mycols_csv] df2 = cudf.read_csv(paths[1], header=0)[mycols_csv] else: df1 = cudf.read_csv(paths[0], names=allcols_csv)[mycols_csv] df2 = cudf.read_csv(paths[1], names=allcols_csv)[mycols_csv] df0 = cudf.concat([df1, df2], axis=0) if engine == "parquet": cat_names = ["name-cat", "name-string"] else: cat_names = ["name-string"] cont_names = ["x", "y", "id"] label_name = ["label"] processor = Workflow(client=client, cat_names=cat_names, cont_names=cont_names, label_name=label_name) processor.add_feature([ops.ZeroFill(), ops.LogOp()]) processor.add_preprocess( ops.Categorify(freq_threshold=freq_threshold, out_path=str(tmpdir), split_out=2)) processor.finalize() if engine in ("parquet", "csv"): dataset = DaskDataset(paths, part_mem_fraction=part_mem_fraction) else: dataset = DaskDataset(paths, names=allcols_csv, part_mem_fraction=part_mem_fraction) processor.apply(dataset, output_path=str(tmpdir)) result = processor.get_ddf().compute() assert len(df0) == len(result) assert result["x"].min() == 0.0 assert result["x"].isna().sum() == 0 assert result["y"].min() == 0.0 assert result["y"].isna().sum() == 0 # Check category counts cat_expect = df0.groupby("name-string").agg({ "name-string": "count" }).reset_index(drop=True) cat_result = result.groupby("name-string").agg({ "name-string": "count" }).reset_index(drop=True) if freq_threshold: cat_expect = cat_expect[cat_expect["name-string"] >= freq_threshold] # Note that we may need to skip the 0th element in result (null mapping) assert_eq( cat_expect, cat_result.iloc[1:] if len(cat_result) > len(cat_expect) else cat_result, check_index=False, ) else: assert_eq(cat_expect, cat_result) # Read back from disk df_disk = dask_cudf.read_parquet("/".join([str(tmpdir), "processed"]), index=False).compute() for col in df_disk: assert_eq(result[col], df_disk[col])
def main(args): # Input data_path = args.data_path out_path = args.out_path freq_limit = args.freq_limit out_files_per_proc = args.splits if args.protocol == "ucx": os.environ["UCX_TLS"] = "tcp,cuda_copy,cuda_ipc,sockcm" # Use Criteo dataset by default (for now) cont_names = (args.cont_names.split(",") if args.cont_names else ["I" + str(x) for x in range(1, 14)]) cat_names = (args.cat_names.split(",") if args.cat_names else ["C" + str(x) for x in range(1, 27)]) label_name = ["label"] if args.cat_splits: tree_width = { name: int(s) for name, s in zip(cat_names, args.cat_splits.split(",")) } else: tree_width = {col: 1 for col in cat_names} if args.cat_names is None: # Using Criteo... Use more hash partitions for # known high-cardinality columns tree_width["C20"] = 8 tree_width["C1"] = 8 tree_width["C22"] = 4 tree_width["C10"] = 4 tree_width["C21"] = 2 tree_width["C11"] = 2 tree_width["C23"] = 2 tree_width["C12"] = 2 # Specify categorical caching location cat_cache = None if args.cat_cache: cat_cache = args.cat_cache.split(",") if len(cat_cache) == 1: cat_cache = cat_cache[0] else: # If user is specifying a list of options, # they must specify an option for every cat column assert len(cat_names) == len(cat_cache) if isinstance(cat_cache, str): cat_cache = {col: cat_cache for col in cat_names} elif isinstance(cat_cache, list): cat_cache = {name: c for name, c in zip(cat_names, cat_cache)} else: # Criteo/DLRM Defaults cat_cache = {col: "device" for col in cat_names} if args.cat_names is None: cat_cache["C20"] = "host" cat_cache["C1"] = "host" # Only need to cache the largest two on a dgx-2 if args.n_workers < 16: cat_cache["C22"] = "host" cat_cache["C10"] = "host" # Use total device size to calculate args.device_limit_frac device_size = device_mem_size(kind="total") device_limit = int(args.device_limit_frac * device_size) device_pool_size = int(args.device_pool_frac * device_size) part_size = int(args.part_mem_frac * device_size) # Setup LocalCUDACluster if args.protocol == "tcp": cluster = LocalCUDACluster( protocol=args.protocol, n_workers=args.n_workers, CUDA_VISIBLE_DEVICES=args.devs, device_memory_limit=device_limit, local_directory=args.dask_workspace, dashboard_address=":3787", ) else: cluster = LocalCUDACluster( protocol=args.protocol, n_workers=args.n_workers, CUDA_VISIBLE_DEVICES=args.devs, enable_nvlink=True, device_memory_limit=device_limit, local_directory=args.dask_workspace, dashboard_address=":3787", ) client = Client(cluster) # Setup RMM pool if not args.no_rmm_pool: setup_rmm_pool(client, device_pool_size) # Define Dask NVTabular "Workflow" processor = Workflow(cat_names=cat_names, cont_names=cont_names, label_name=label_name, client=client) processor.add_feature([ops.ZeroFill(), ops.LogOp()]) processor.add_preprocess( ops.Categorify( out_path=out_path, tree_width=tree_width, cat_cache=cat_cache, freq_threshold=freq_limit, on_host=args.cat_on_host, )) processor.finalize() dataset = Dataset(data_path, "parquet", part_size=part_size) # Execute the dask graph runtime = time.time() if args.profile is not None: with performance_report(filename=args.profile): processor.apply( dataset, shuffle="full" if args.worker_shuffle else "partial", out_files_per_proc=out_files_per_proc, output_path=out_path, ) else: processor.apply( dataset, shuffle="full" if args.worker_shuffle else "partial", out_files_per_proc=out_files_per_proc, output_path=out_path, ) runtime = time.time() - runtime print("\nDask-NVTabular DLRM/Criteo benchmark") print("--------------------------------------") print(f"partition size | {part_size}") print(f"protocol | {args.protocol}") print(f"device(s) | {args.devs}") print(f"rmm-pool | {(not args.no_rmm_pool)}") print(f"out_files_per_proc | {args.splits}") print(f"worker-shuffle | {args.worker_shuffle}") print("======================================") print(f"Runtime[s] | {runtime}") print("======================================\n") client.close()
def test_gpu_workflow_api(tmpdir, df, dataset, gpu_memory_frac, engine, dump, op_columns): cat_names = ["name-cat", "name-string" ] if engine == "parquet" else ["name-string"] cont_names = ["x", "y", "id"] label_name = ["label"] processor = nvt.Workflow( cat_names=cat_names, cont_names=cont_names, label_name=label_name, ) processor.add_feature([ops.ZeroFill(columns=op_columns), ops.LogOp()]) processor.add_preprocess(ops.Normalize()) processor.add_preprocess(ops.Categorify()) processor.finalize() processor.update_stats(dataset) if dump: config_file = tmpdir + "/temp.yaml" processor.save_stats(config_file) processor.clear_stats() processor.load_stats(config_file) def get_norms(tar: cudf.Series): gdf = tar.fillna(0) gdf = gdf * (gdf >= 0).astype("int") gdf = np.log(gdf + 1) return gdf # Check mean and std - No good right now we have to add all other changes; Zerofill, Log if not op_columns: assert math.isclose( get_norms(df.y).mean(), processor.stats["means"]["y"], rel_tol=1e-1, ) assert math.isclose( get_norms(df.y).std(), processor.stats["stds"]["y"], rel_tol=1e-1, ) assert math.isclose( get_norms(df.x).mean(), processor.stats["means"]["x"], rel_tol=1e-1, ) assert math.isclose( get_norms(df.x).std(), processor.stats["stds"]["x"], rel_tol=1e-1, ) # Check that categories match if engine == "parquet": cats_expected0 = df["name-cat"].unique().values_to_string() cats0 = processor.stats["encoders"]["name-cat"].get_cats( ).values_to_string() # adding the None entry as a string because of move from gpu assert cats0 == ["None"] + cats_expected0 cats_expected1 = df["name-string"].unique().values_to_string() cats1 = processor.stats["encoders"]["name-string"].get_cats( ).values_to_string() # adding the None entry as a string because of move from gpu assert cats1 == ["None"] + cats_expected1 # Write to new "shuffled" and "processed" dataset processor.write_to_dataset(tmpdir, dataset, nfiles=10, shuffle=True, apply_ops=True) data_itr_2 = nvtabular.io.GPUDatasetIterator( glob.glob(str(tmpdir) + "/ds_part.*.parquet"), use_row_groups=True, gpu_memory_frac=gpu_memory_frac, ) df_pp = None for chunk in data_itr_2: df_pp = cudf.concat([df_pp, chunk], axis=0) if df_pp else chunk if engine == "parquet": assert df_pp["name-cat"].dtype == "int64" assert df_pp["name-string"].dtype == "int64" num_rows, num_row_groups, col_names = cudf.io.read_parquet_metadata( str(tmpdir) + "/_metadata") assert num_rows == len(df_pp) return processor.ds_exports
def main(args): """Multi-GPU Criteo/DLRM Preprocessing Benchmark This benchmark is designed to measure the time required to preprocess the Criteo (1TB) dataset for Facebook’s DLRM model. The user must specify the path of the raw dataset (using the `--data-path` flag), as well as the output directory for all temporary/final data (using the `--out-path` flag) Example Usage ------------- python dask-nvtabular-criteo-benchmark.py --data-path /path/to/criteo_parquet --out-path /out/dir/` Dataset Requirements (Parquet) ------------------------------ This benchmark is designed with a parquet-formatted dataset in mind. While a CSV-formatted dataset can be processed by NVTabular, converting to parquet will yield significantly better performance. To convert your dataset, try using the `optimize_criteo.ipynb` notebook (also located in `NVTabular/examples/`) For a detailed parameter overview see `NVTabular/examples/MultiGPUBench.md` """ # Input data_path = args.data_path freq_limit = args.freq_limit out_files_per_proc = args.out_files_per_proc high_card_columns = args.high_cards.split(",") dashboard_port = args.dashboard_port if args.protocol == "ucx": UCX_TLS = os.environ.get("UCX_TLS", "tcp,cuda_copy,cuda_ipc,sockcm") os.environ["UCX_TLS"] = UCX_TLS # Cleanup output directory BASE_DIR = args.out_path dask_workdir = os.path.join(BASE_DIR, "workdir") output_path = os.path.join(BASE_DIR, "output") stats_path = os.path.join(BASE_DIR, "stats") if not os.path.isdir(BASE_DIR): os.mkdir(BASE_DIR) for dir_path in (dask_workdir, output_path, stats_path): if os.path.isdir(dir_path): shutil.rmtree(dir_path) os.mkdir(dir_path) # Use Criteo dataset by default (for now) cont_names = (args.cont_names.split(",") if args.cont_names else ["I" + str(x) for x in range(1, 14)]) cat_names = (args.cat_names.split(",") if args.cat_names else ["C" + str(x) for x in range(1, 27)]) label_name = ["label"] # Specify Categorify/GroupbyStatistics options tree_width = {} cat_cache = {} for col in cat_names: if col in high_card_columns: tree_width[col] = args.tree_width cat_cache[col] = args.cat_cache_high else: tree_width[col] = 1 cat_cache[col] = args.cat_cache_low # Use total device size to calculate args.device_limit_frac device_size = device_mem_size(kind="total") device_limit = int(args.device_limit_frac * device_size) device_pool_size = int(args.device_pool_frac * device_size) part_size = int(args.part_mem_frac * device_size) # Parse shuffle option shuffle = None if args.shuffle == "PER_WORKER": shuffle = nvt_io.Shuffle.PER_WORKER elif args.shuffle == "PER_PARTITION": shuffle = nvt_io.Shuffle.PER_PARTITION # Check if any device memory is already occupied for dev in args.devices.split(","): fmem = _pynvml_mem_size(kind="free", index=int(dev)) used = (device_size - fmem) / 1e9 if used > 1.0: warnings.warn( f"BEWARE - {used} GB is already occupied on device {int(dev)}!" ) # Setup LocalCUDACluster if args.protocol == "tcp": cluster = LocalCUDACluster( protocol=args.protocol, n_workers=args.n_workers, CUDA_VISIBLE_DEVICES=args.devices, device_memory_limit=device_limit, local_directory=dask_workdir, dashboard_address=":" + dashboard_port, ) else: cluster = LocalCUDACluster( protocol=args.protocol, n_workers=args.n_workers, CUDA_VISIBLE_DEVICES=args.devices, enable_nvlink=True, device_memory_limit=device_limit, local_directory=dask_workdir, dashboard_address=":" + dashboard_port, ) client = Client(cluster) # Setup RMM pool if args.device_pool_frac > 0.01: setup_rmm_pool(client, device_pool_size) # Define Dask NVTabular "Workflow" processor = Workflow(cat_names=cat_names, cont_names=cont_names, label_name=label_name, client=client) if args.normalize: processor.add_feature([ops.FillMissing(), ops.Normalize()]) else: processor.add_feature( [ops.FillMissing(), ops.Clip(min_value=0), ops.LogOp()]) processor.add_preprocess( ops.Categorify( out_path=stats_path, tree_width=tree_width, cat_cache=cat_cache, freq_threshold=freq_limit, search_sorted=not freq_limit, on_host=not args.cats_on_device, )) processor.finalize() dataset = Dataset(data_path, "parquet", part_size=part_size) # Execute the dask graph runtime = time.time() if args.profile is not None: with performance_report(filename=args.profile): processor.apply( dataset, shuffle=shuffle, out_files_per_proc=out_files_per_proc, output_path=output_path, num_io_threads=args.num_io_threads, ) else: processor.apply( dataset, num_io_threads=args.num_io_threads, shuffle=shuffle, out_files_per_proc=out_files_per_proc, output_path=output_path, ) runtime = time.time() - runtime print("\nDask-NVTabular DLRM/Criteo benchmark") print("--------------------------------------") print(f"partition size | {part_size}") print(f"protocol | {args.protocol}") print(f"device(s) | {args.devices}") print(f"rmm-pool-frac | {(args.device_pool_frac)}") print(f"out-files-per-proc | {args.out_files_per_proc}") print(f"num_io_threads | {args.num_io_threads}") print(f"shuffle | {args.shuffle}") print(f"cats-on-device | {args.cats_on_device}") print("======================================") print(f"Runtime[s] | {runtime}") print("======================================\n") client.close()
def test_dask_workflow_api_dlrm( client, tmpdir, datasets, freq_threshold, part_mem_fraction, engine, cat_cache, on_host, shuffle, cpu, ): paths = glob.glob(str(datasets[engine]) + "/*." + engine.split("-")[0]) paths = sorted(paths) if engine == "parquet": df1 = cudf.read_parquet(paths[0])[mycols_pq] df2 = cudf.read_parquet(paths[1])[mycols_pq] elif engine == "csv": df1 = cudf.read_csv(paths[0], header=0)[mycols_csv] df2 = cudf.read_csv(paths[1], header=0)[mycols_csv] else: df1 = cudf.read_csv(paths[0], names=allcols_csv)[mycols_csv] df2 = cudf.read_csv(paths[1], names=allcols_csv)[mycols_csv] df0 = cudf.concat([df1, df2], axis=0) df0 = df0.to_pandas() if cpu else df0 if engine == "parquet": cat_names = ["name-cat", "name-string"] else: cat_names = ["name-string"] cont_names = ["x", "y", "id"] label_name = ["label"] cats = cat_names >> ops.Categorify(freq_threshold=freq_threshold, out_path=str(tmpdir), cat_cache=cat_cache, on_host=on_host) conts = cont_names >> ops.FillMissing() >> ops.Clip( min_value=0) >> ops.LogOp() workflow = Workflow(cats + conts + label_name, client=client) if engine in ("parquet", "csv"): dataset = Dataset(paths, cpu=cpu, part_mem_fraction=part_mem_fraction) else: dataset = Dataset(paths, cpu=cpu, names=allcols_csv, part_mem_fraction=part_mem_fraction) output_path = os.path.join(tmpdir, "processed") transformed = workflow.fit_transform(dataset) transformed.to_parquet(output_path=output_path, shuffle=shuffle, out_files_per_proc=1) result = transformed.to_ddf().compute() assert len(df0) == len(result) assert result["x"].min() == 0.0 assert result["x"].isna().sum() == 0 assert result["y"].min() == 0.0 assert result["y"].isna().sum() == 0 # Check categories. Need to sort first to make sure we are comparing # "apples to apples" expect = df0.sort_values(["label", "x", "y", "id"]).reset_index(drop=True).reset_index() got = result.sort_values(["label", "x", "y", "id"]).reset_index(drop=True).reset_index() dfm = expect.merge(got, on="index", how="inner")[["name-string_x", "name-string_y"]] dfm_gb = dfm.groupby(["name-string_x", "name-string_y"]).agg({ "name-string_x": "count", "name-string_y": "count" }) if freq_threshold: dfm_gb = dfm_gb[dfm_gb["name-string_x"] >= freq_threshold] assert_eq(dfm_gb["name-string_x"], dfm_gb["name-string_y"], check_names=False) # Read back from disk if cpu: df_disk = dd_read_parquet(output_path).compute() else: df_disk = dask_cudf.read_parquet(output_path).compute() # we don't have a deterministic ordering here, especially when using # a dask client with multiple workers - so we need to sort the values here columns = ["label", "x", "y", "id"] + cat_names got = result.sort_values(columns).reset_index(drop=True) expect = df_disk.sort_values(columns).reset_index(drop=True) assert_eq(got, expect)
@pytest.mark.parametrize( "op", [ ops.Bucketize([1]), ops.Rename(postfix="_trim"), ops.Categorify(), ops.Categorify(encode_type="combo"), ops.Clip(0), ops.DifferenceLag("col1"), ops.FillMissing(), ops.Groupby("col1"), ops.HashBucket(1), ops.HashedCross(1), ops.JoinGroupby("col1"), ops.ListSlice(0), ops.LogOp(), ops.Normalize(), ops.TargetEncoding("col1"), ], ) def test_workflow_select_by_tags(op): schema1 = ColumnSchema("col1", tags=["b", "c", "d"]) schema2 = ColumnSchema("col2", tags=["c", "d"]) schema3 = ColumnSchema("col3", tags=["d"]) schema = Schema([schema1, schema2, schema3]) cont_features = ColumnSelector(tags=["c"]) >> op workflow = Workflow(cont_features) workflow.fit_schema(schema) output_cols = op.output_column_names(ColumnSelector(["col1", "col2"]))
def test_s3_dataset(s3_base, s3so, paths, datasets, engine, df, patch_aiobotocore): # Copy files to mock s3 bucket files = {} for i, path in enumerate(paths): with open(path, "rb") as f: fbytes = f.read() fn = path.split(os.path.sep)[-1] files[fn] = BytesIO() files[fn].write(fbytes) files[fn].seek(0) if engine == "parquet": # Workaround for nvt#539. In order to avoid the # bug in Dask's `create_metadata_file`, we need # to manually generate a "_metadata" file here. # This can be removed after dask#7295 is merged # (see https://github.com/dask/dask/pull/7295) fn = "_metadata" files[fn] = BytesIO() meta = create_metadata_file( paths, engine="pyarrow", out_dir=False, ) meta.write_metadata_file(files[fn]) files[fn].seek(0) with s3_context(s3_base=s3_base, bucket=engine, files=files) as s3fs: # Create nvt.Dataset from mock s3 paths url = f"s3://{engine}" if engine == "parquet" else f"s3://{engine}/*" dataset = nvt.Dataset(url, engine=engine, storage_options=s3so) # Check that the iteration API works columns = mycols_pq if engine == "parquet" else mycols_csv gdf = nvt.dispatch._concat(list(dataset.to_iter()))[columns] assert_eq(gdf.reset_index(drop=True), df.reset_index(drop=True)) cat_names = ["name-cat", "name-string" ] if engine == "parquet" else ["name-string"] cont_names = ["x", "y", "id"] label_name = ["label"] conts = cont_names >> ops.FillMissing() >> ops.Clip( min_value=0) >> ops.LogOp() cats = cat_names >> ops.Categorify(cat_cache="host") processor = nvt.Workflow(conts + cats + label_name) processor.fit(dataset) # make sure we can write out the dataset back to S3 # (https://github.com/NVIDIA-Merlin/NVTabular/issues/1214) processor.transform(dataset).to_parquet(f"s3://{engine}/output") expected = processor.transform(dataset).to_ddf().compute() # make sure we can write out the workflow to s3 processor.save(f"s3://{engine}/saved_workflow/") # make sure the workflow got saved to the right spot in S3 workflow_files = s3fs.ls(f"/{engine}/saved_workflow/") assert workflow_files # finally make sure we can read in the workflow from S3, and use it # to transform values and get the same result as on the local fs reloaded = nvt.Workflow.load(f"s3://{engine}/saved_workflow/") from_s3 = reloaded.transform(dataset).to_ddf().compute() assert_eq(expected, from_s3)
def test_hugectr(tmpdir, df, dataset, output_format, engine, op_columns, num_io_threads): cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"] cont_names = ["x", "y"] label_names = ["label"] # set variables nfiles = 10 ext = "" outdir = tmpdir + "/hugectr" os.mkdir(outdir) # process data processor = nvt.Workflow(cat_names=cat_names, cont_names=cont_names, label_name=label_names) processor.add_feature([ops.ZeroFill(columns=op_columns), ops.LogOp()]) processor.add_preprocess(ops.Normalize()) processor.add_preprocess(ops.Categorify()) processor.finalize() # Need to collect statistics first (for now) processor.update_stats(dataset) # Second "online" pass to write HugeCTR output processor.apply( dataset, apply_offline=False, record_stats=False, output_path=outdir, out_files_per_proc=nfiles, output_format=output_format, shuffle=False, num_io_threads=num_io_threads, ) # Check for _file_list.txt assert os.path.isfile(outdir + "/_file_list.txt") # Check for _metadata.json assert os.path.isfile(outdir + "/_metadata.json") # Check contents of _metadata.json data = {} col_summary = {} with open(outdir + "/_metadata.json", "r") as fil: for k, v in json.load(fil).items(): data[k] = v assert "cats" in data assert "conts" in data assert "labels" in data assert "file_stats" in data assert len(data["file_stats"]) == nfiles for cdata in data["cats"] + data["conts"] + data["labels"]: col_summary[cdata["index"]] = cdata["col_name"] # Check that data files exist ext = "" if output_format == "parquet": ext = "parquet" elif output_format == "hugectr": ext = "data" for n in range(nfiles): assert os.path.isfile(os.path.join(outdir, str(n) + "." + ext)) # Make sure the columns in "_metadata.json" make sense if output_format == "parquet": df_check = cudf.read_parquet(os.path.join(outdir, "0.parquet")) for i, name in enumerate(df_check.columns): if i in col_summary: assert col_summary[i] == name
def test_workflow_apply(client, use_client, tmpdir, shuffle, apply_offline): out_files_per_proc = 2 out_path = str(tmpdir.mkdir("processed")) path = str(tmpdir.join("simple.parquet")) size = 25 row_group_size = 5 cont_columns = ["cont1", "cont2"] cat_columns = ["cat1", "cat2"] label_column = ["label"] df = pd.DataFrame( { "cont1": np.arange(size, dtype=np.float64), "cont2": np.arange(size, dtype=np.float64), "cat1": np.arange(size, dtype=np.int32), "cat2": np.arange(size, dtype=np.int32), "label": np.arange(size, dtype=np.float64), } ) df.to_parquet(path, row_group_size=row_group_size, engine="pyarrow") dataset = nvt.Dataset(path, engine="parquet", row_groups_per_part=1) processor = nvt.Workflow( cat_names=cat_columns, cont_names=cont_columns, label_name=label_column, client=client if use_client else None, ) processor.add_cont_feature([ops.FillMissing(), ops.Clip(min_value=0), ops.LogOp()]) processor.add_cat_preprocess(ops.Categorify()) processor.finalize() # Force dtypes dict_dtypes = {} for col in cont_columns: dict_dtypes[col] = np.float32 for col in cat_columns: dict_dtypes[col] = np.float32 for col in label_column: dict_dtypes[col] = np.int64 if not apply_offline: processor.apply( dataset, output_format=None, record_stats=True, ) processor.apply( dataset, apply_offline=apply_offline, record_stats=apply_offline, output_path=out_path, shuffle=shuffle, out_files_per_proc=out_files_per_proc, dtypes=dict_dtypes, ) # Check dtypes for filename in glob.glob(os.path.join(out_path, "*.parquet")): gdf = cudf.io.read_parquet(filename) assert dict(gdf.dtypes) == dict_dtypes
def test_gpu_preproc(tmpdir, datasets, dump, gpu_memory_frac, engine, preprocessing): paths = glob.glob(str(datasets[engine]) + "/*." + engine.split("-")[0]) if engine == "parquet": df1 = cudf.read_parquet(paths[0])[mycols_pq] df2 = cudf.read_parquet(paths[1])[mycols_pq] else: df1 = cudf.read_csv(paths[0], header=False, names=allcols_csv)[mycols_csv] df2 = cudf.read_csv(paths[1], header=False, names=allcols_csv)[mycols_csv] df = cudf.concat([df1, df2], axis=0) df["id"] = df["id"].astype("int64") if engine == "parquet": cat_names = ["name-cat", "name-string"] columns = mycols_pq else: cat_names = ["name-string"] columns = mycols_csv cont_names = ["x", "y", "id"] label_name = ["label"] processor = nvt.Workflow( cat_names=cat_names, cont_names=cont_names, label_name=label_name, to_cpu=True, ) processor.add_feature( [ops.FillMissing(), ops.LogOp(preprocessing=preprocessing)]) processor.add_preprocess(ops.Normalize()) processor.add_preprocess(ops.Categorify()) processor.finalize() data_itr = nvtabular.io.GPUDatasetIterator( paths, columns=columns, use_row_groups=True, gpu_memory_frac=gpu_memory_frac, names=allcols_csv, ) processor.update_stats(data_itr) if dump: config_file = tmpdir + "/temp.yaml" processor.save_stats(config_file) processor.clear_stats() processor.load_stats(config_file) def get_norms(tar: cudf.Series): ser_median = tar.dropna().quantile(0.5, interpolation="linear") gdf = tar.fillna(ser_median) gdf = np.log(gdf + 1) return gdf # Check mean and std - No good right now we have to add all other changes; Zerofill, Log x_col = "x" if preprocessing else "x_LogOp" y_col = "y" if preprocessing else "y_LogOp" assert math.isclose( get_norms(df.x).mean(), processor.stats["means"][x_col], rel_tol=1e-2, ) assert math.isclose( get_norms(df.y).mean(), processor.stats["means"][y_col], rel_tol=1e-2, ) assert math.isclose( get_norms(df.x).std(), processor.stats["stds"][x_col], rel_tol=1e-2, ) assert math.isclose( get_norms(df.y).std(), processor.stats["stds"][y_col], rel_tol=1e-2, ) # Check median (TODO: Improve the accuracy) x_median = df.x.dropna().quantile(0.5, interpolation="linear") y_median = df.y.dropna().quantile(0.5, interpolation="linear") id_median = df.id.dropna().quantile(0.5, interpolation="linear") assert math.isclose(x_median, processor.stats["medians"]["x"], rel_tol=1e1) assert math.isclose(y_median, processor.stats["medians"]["y"], rel_tol=1e1) assert math.isclose(id_median, processor.stats["medians"]["id"], rel_tol=1e1) # Check that categories match if engine == "parquet": cats_expected0 = df["name-cat"].unique().values_to_string() cats0 = processor.stats["encoders"]["name-cat"].get_cats( ).values_to_string() assert cats0 == ["None"] + cats_expected0 cats_expected1 = df["name-string"].unique().values_to_string() cats1 = processor.stats["encoders"]["name-string"].get_cats( ).values_to_string() print(cats1) assert cats1 == ["None"] + cats_expected1 # Write to new "shuffled" and "processed" dataset processor.write_to_dataset(tmpdir, data_itr, nfiles=10, shuffle=True, apply_ops=True) processor.create_final_cols() # if preprocessing if not preprocessing: for col in cont_names: assert f"{col}_LogOp" in processor.columns_ctx["final"]["cols"][ "continuous"] dlc = nvtabular.torch_dataloader.DLCollator(preproc=processor, apply_ops=False) data_files = [ nvtabular.torch_dataloader.FileItrDataset( x, use_row_groups=True, gpu_memory_frac=gpu_memory_frac, names=allcols_csv, ) for x in glob.glob(str(tmpdir) + "/ds_part.*.parquet") ] data_itr = torch.utils.data.ChainDataset(data_files) dl = nvtabular.torch_dataloader.DLDataLoader(data_itr, collate_fn=dlc.gdf_col, pin_memory=False, num_workers=0) len_df_pp = 0 for chunk in dl: len_df_pp += len(chunk[0][0]) data_itr = nvtabular.io.GPUDatasetIterator( glob.glob(str(tmpdir) + "/ds_part.*.parquet"), use_row_groups=True, gpu_memory_frac=gpu_memory_frac, names=allcols_csv, ) x = processor.ds_to_tensors(data_itr, apply_ops=False) num_rows, num_row_groups, col_names = cudf.io.read_parquet_metadata( str(tmpdir) + "/_metadata") assert len(x[0]) == len_df_pp itr_ds = nvtabular.torch_dataloader.TensorItrDataset([x[0], x[1], x[2]], batch_size=512000) count_tens_itr = 0 for data_gd in itr_ds: count_tens_itr += len(data_gd[1]) assert data_gd[0][0].shape[1] > 0 assert data_gd[0][1].shape[1] > 0 assert len_df_pp == count_tens_itr if os.path.exists(processor.ds_exports): shutil.rmtree(processor.ds_exports)
def test_gpu_workflow_api(tmpdir, client, df, dataset, gpu_memory_frac, engine, dump, op_columns, use_client): cat_names = ["name-cat", "name-string" ] if engine == "parquet" else ["name-string"] cont_names = ["x", "y", "id"] label_name = ["label"] processor = nvt.Workflow( cat_names=cat_names, cont_names=cont_names, label_name=label_name, client=client if use_client else None, ) processor.add_feature([ops.ZeroFill(columns=op_columns), ops.LogOp()]) processor.add_preprocess(ops.Normalize()) processor.add_preprocess(ops.Categorify(cat_cache="host")) processor.finalize() processor.update_stats(dataset) if dump: config_file = tmpdir + "/temp.yaml" processor.save_stats(config_file) processor.clear_stats() processor.load_stats(config_file) def get_norms(tar: cudf.Series): gdf = tar.fillna(0) gdf = gdf * (gdf >= 0).astype("int") gdf = np.log(gdf + 1) return gdf # Check mean and std - No good right now we have to add all other changes; Zerofill, Log if not op_columns: assert math.isclose(get_norms(df.y).mean(), processor.stats["means"]["y"], rel_tol=1e-1) assert math.isclose(get_norms(df.y).std(), processor.stats["stds"]["y"], rel_tol=1e-1) assert math.isclose(get_norms(df.x).mean(), processor.stats["means"]["x"], rel_tol=1e-1) assert math.isclose(get_norms(df.x).std(), processor.stats["stds"]["x"], rel_tol=1e-1) # Check that categories match if engine == "parquet": cats_expected0 = df["name-cat"].unique().values_host cats0 = get_cats(processor, "name-cat") # adding the None entry as a string because of move from gpu assert cats0.tolist() == [None] + cats_expected0.tolist() cats_expected1 = df["name-string"].unique().values_host cats1 = get_cats(processor, "name-string") # adding the None entry as a string because of move from gpu assert cats1.tolist() == [None] + cats_expected1.tolist() # Write to new "shuffled" and "processed" dataset processor.write_to_dataset(tmpdir, dataset, out_files_per_proc=10, shuffle="partial", apply_ops=True) dataset_2 = Dataset(glob.glob(str(tmpdir) + "/*.parquet"), part_mem_fraction=gpu_memory_frac) df_pp = cudf.concat(list(dataset_2.to_iter()), axis=0) if engine == "parquet": assert is_integer_dtype(df_pp["name-cat"].dtype) assert is_integer_dtype(df_pp["name-string"].dtype) num_rows, num_row_groups, col_names = cudf.io.read_parquet_metadata( str(tmpdir) + "/_metadata") assert num_rows == len(df_pp)
def test_hugectr(tmpdir, client, df, dataset, output_format, engine, op_columns, num_io_threads, use_client): client = client if use_client else None cat_names = ["name-cat", "name-string" ] if engine == "parquet" else ["name-string"] cont_names = ["x", "y"] label_names = ["label"] # set variables nfiles = 10 ext = "" outdir = tmpdir + "/hugectr" os.mkdir(outdir) # process data processor = nvt.Workflow(client=client, cat_names=cat_names, cont_names=cont_names, label_name=label_names) processor.add_feature([ ops.FillMissing(columns=op_columns), ops.Clip(min_value=0, columns=op_columns), ops.LogOp(), ]) processor.add_preprocess(ops.Normalize()) processor.add_preprocess(ops.Categorify()) processor.finalize() # apply the workflow and write out the dataset processor.apply( dataset, output_path=outdir, out_files_per_proc=nfiles, output_format=output_format, shuffle=None, num_io_threads=num_io_threads, ) # Check for _file_list.txt assert os.path.isfile(outdir + "/_file_list.txt") # Check for _metadata.json assert os.path.isfile(outdir + "/_metadata.json") # Check contents of _metadata.json data = {} col_summary = {} with open(outdir + "/_metadata.json", "r") as fil: for k, v in json.load(fil).items(): data[k] = v assert "cats" in data assert "conts" in data assert "labels" in data assert "file_stats" in data assert len(data["file_stats"]) == nfiles if not client else nfiles * len( client.cluster.workers) for cdata in data["cats"] + data["conts"] + data["labels"]: col_summary[cdata["index"]] = cdata["col_name"] # Check that data files exist ext = "" if output_format == "parquet": ext = "parquet" elif output_format == "hugectr": ext = "data" data_files = [ os.path.join(outdir, filename) for filename in os.listdir(outdir) if filename.endswith(ext) ] # Make sure the columns in "_metadata.json" make sense if output_format == "parquet": df_check = cudf.read_parquet(os.path.join(outdir, data_files[0])) for i, name in enumerate(df_check.columns): if i in col_summary: assert col_summary[i] == name
def test_gpu_workflow_config(tmpdir, datasets, dump, gpu_memory_frac, engine, replace): paths = glob.glob(str(datasets[engine]) + "/*." + engine.split("-")[0]) if engine == "parquet": df1 = cudf.read_parquet(paths[0])[mycols_pq] df2 = cudf.read_parquet(paths[1])[mycols_pq] else: df1 = cudf.read_csv(paths[0], header=False, names=allcols_csv)[mycols_csv] df2 = cudf.read_csv(paths[1], header=False, names=allcols_csv)[mycols_csv] df = cudf.concat([df1, df2], axis=0) df["id"] = df["id"].astype("int64") if engine == "parquet": cat_names = ["name-cat", "name-string"] columns = mycols_pq else: cat_names = ["name-string"] columns = mycols_csv cont_names = ["x", "y", "id"] label_name = ["label"] config = nvt.workflow.get_new_config() # add operators with dependencies config["FE"]["continuous"] = [[ ops.FillMissing(replace=replace), ops.LogOp() ]] config["PP"]["continuous"] = [[ ops.LogOp(replace=replace), ops.Normalize() ]] config["PP"]["categorical"] = [ops.Categorify()] processor = nvt.Workflow( cat_names=cat_names, cont_names=cont_names, label_name=label_name, config=config, to_cpu=False, ) data_itr = nvt.io.GPUDatasetIterator( paths, columns=columns, use_row_groups=True, gpu_memory_frac=gpu_memory_frac, names=allcols_csv, ) processor.update_stats(data_itr) if dump: config_file = tmpdir + "/temp.yaml" processor.save_stats(config_file) processor.clear_stats() processor.load_stats(config_file) def get_norms(tar: cudf.Series): ser_median = tar.dropna().quantile(0.5, interpolation="linear") gdf = tar.fillna(ser_median) gdf = np.log(gdf + 1) return gdf # Check mean and std - No good right now we have to add all other changes; Zerofill, Log concat_ops = "_FillMissing_LogOp" if replace: concat_ops = "" assert math.isclose( get_norms(df.x).mean(), processor.stats["means"]["x" + concat_ops], rel_tol=1e-1, ) assert math.isclose( get_norms(df.y).mean(), processor.stats["means"]["y" + concat_ops], rel_tol=1e-1, ) assert math.isclose( get_norms(df.x).std(), processor.stats["stds"]["x" + concat_ops], rel_tol=1e-1, ) assert math.isclose( get_norms(df.y).std(), processor.stats["stds"]["y" + concat_ops], rel_tol=1e-1, ) # Check that categories match if engine == "parquet": cats_expected0 = df["name-cat"].unique().values_to_string() cats0 = processor.stats["encoders"]["name-cat"].get_cats( ).values_to_string() # adding the None entry as a string because of move from gpu assert cats0 == ["None"] + cats_expected0 cats_expected1 = df["name-string"].unique().values_to_string() cats1 = processor.stats["encoders"]["name-string"].get_cats( ).values_to_string() # adding the None entry as a string because of move from gpu assert cats1 == ["None"] + cats_expected1 # Write to new "shuffled" and "processed" dataset processor.write_to_dataset(tmpdir, data_itr, nfiles=10, shuffle=True, apply_ops=True) data_itr_2 = nvtabular.io.GPUDatasetIterator( glob.glob(str(tmpdir) + "/ds_part.*.parquet"), use_row_groups=True, gpu_memory_frac=gpu_memory_frac, ) df_pp = None for chunk in data_itr_2: df_pp = cudf.concat([df_pp, chunk], axis=0) if df_pp else chunk if engine == "parquet": assert df_pp["name-cat"].dtype == "int64" assert df_pp["name-string"].dtype == "int64" num_rows, num_row_groups, col_names = cudf.io.read_parquet_metadata( str(tmpdir) + "/_metadata") assert num_rows == len(df_pp) return processor.ds_exports
def test_gpu_workflow_config(tmpdir, client, df, dataset, gpu_memory_frac, engine, dump, replace): cat_names = ["name-cat", "name-string" ] if engine == "parquet" else ["name-string"] cont_names = ["x", "y", "id"] label_name = ["label"] config = nvt.workflow.get_new_config() # add operators with dependencies config["FE"]["continuous"] = [[ ops.FillMissing(replace=replace), ops.LogOp(replace=replace) ]] config["PP"]["continuous"] = [[ ops.LogOp(replace=replace), ops.Normalize() ]] config["PP"]["categorical"] = [ops.Categorify()] processor = nvt.Workflow( cat_names=cat_names, cont_names=cont_names, label_name=label_name, config=config, client=client, ) processor.update_stats(dataset) if dump: config_file = tmpdir + "/temp.yaml" processor.save_stats(config_file) processor.clear_stats() processor.load_stats(config_file) def get_norms(tar: cudf.Series): ser_median = tar.dropna().quantile(0.5, interpolation="linear") gdf = tar.fillna(ser_median) gdf = np.log(gdf + 1) return gdf # Check mean and std - No good right now we have to add all other changes; Zerofill, Log concat_ops = "_FillMissing_LogOp" if replace: concat_ops = "" assert math.isclose(get_norms(df.x).mean(), processor.stats["means"]["x" + concat_ops], rel_tol=1e-1) assert math.isclose(get_norms(df.y).mean(), processor.stats["means"]["y" + concat_ops], rel_tol=1e-1) assert math.isclose(get_norms(df.x).std(), processor.stats["stds"]["x" + concat_ops], rel_tol=1e-1) assert math.isclose(get_norms(df.y).std(), processor.stats["stds"]["y" + concat_ops], rel_tol=1e-1) # Check that categories match if engine == "parquet": cats_expected0 = df["name-cat"].unique().values_host cats0 = get_cats(processor, "name-cat") # adding the None entry as a string because of move from gpu assert cats0.tolist() == [None] + cats_expected0.tolist() cats_expected1 = df["name-string"].unique().values_host cats1 = get_cats(processor, "name-string") # adding the None entry as a string because of move from gpu assert cats1.tolist() == [None] + cats_expected1.tolist() # Write to new "shuffled" and "processed" dataset processor.write_to_dataset(tmpdir, dataset, out_files_per_proc=10, shuffle="partial", apply_ops=True) dataset_2 = Dataset(glob.glob(str(tmpdir) + "/*.parquet"), part_mem_fraction=gpu_memory_frac) df_pp = cudf.concat(list(dataset_2.to_iter()), axis=0) if engine == "parquet": assert is_integer_dtype(df_pp["name-cat"].dtype) assert is_integer_dtype(df_pp["name-string"].dtype) num_rows, num_row_groups, col_names = cudf.io.read_parquet_metadata( str(tmpdir) + "/_metadata") assert num_rows == len(df_pp)
def nvt_etl( data_path, out_path, devices, protocol, device_limit_frac, device_pool_frac, part_mem_frac, cats, conts, labels, out_files_per_proc, ): # Set up data paths input_path = data_path[:-1] if data_path[-1] == "/" else data_path base_dir = out_path[:-1] if out_path[-1] == "/" else out_path dask_workdir = os.path.join(base_dir, "workdir") output_path = os.path.join(base_dir, "output") stats_path = os.path.join(base_dir, "stats") output_train_dir = os.path.join(output_path, "train/") output_valid_dir = os.path.join(output_path, "valid/") # Make sure we have a clean worker space for Dask if os.path.isdir(dask_workdir): shutil.rmtree(dask_workdir) os.makedirs(dask_workdir) # Make sure we have a clean stats space for Dask if os.path.isdir(stats_path): shutil.rmtree(stats_path) os.mkdir(stats_path) # Make sure we have a clean output path if os.path.isdir(output_path): shutil.rmtree(output_path) os.mkdir(output_path) os.mkdir(output_train_dir) os.mkdir(output_valid_dir) # Get train/valid files train_paths = [ os.path.join(input_path, f) for f in os.listdir(input_path) if os.path.isfile(os.path.join(input_path, f)) ] n_files = int(len(train_paths) * 0.9) valid_paths = train_paths[n_files:] train_paths = train_paths[:n_files] # Force dtypes for HugeCTR usage dict_dtypes = {} for col in cats: dict_dtypes[col] = np.int64 for col in conts: dict_dtypes[col] = np.float32 for col in labels: dict_dtypes[col] = np.float32 # Use total device size to calculate args.device_limit_frac device_size = device_mem_size(kind="total") device_limit = int(device_limit_frac * device_size) device_pool_size = int(device_pool_frac * device_size) part_size = int(part_mem_frac * device_size) # Check if any device memory is already occupied for dev in devices.split(","): fmem = _pynvml_mem_size(kind="free", index=int(dev)) used = (device_size - fmem) / 1e9 if used > 1.0: warnings.warn( f"BEWARE - {used} GB is already occupied on device {int(dev)}!" ) # Setup dask cluster and perform ETL with managed_client(dask_workdir, devices, device_limit, protocol) as client: # Setup RMM pool if device_pool_frac > 0.01: setup_rmm_pool(client, device_pool_size) # Define Dask NVTabular "Workflow" cont_features = conts >> ops.FillMissing() >> ops.Clip( min_value=0) >> ops.LogOp() cat_features = cats >> ops.Categorify(out_path=stats_path, max_size=10000000) workflow = Workflow(cat_features + cont_features + labels, client=client) train_dataset = Dataset(train_paths, engine="parquet", part_size=part_size) valid_dataset = Dataset(valid_paths, engine="parquet", part_size=part_size) workflow.fit(train_dataset) workflow.transform(train_dataset).to_parquet( output_path=output_train_dir, shuffle=nvt_io.Shuffle.PER_WORKER, dtypes=dict_dtypes, cats=cats, conts=conts, labels=labels, out_files_per_proc=out_files_per_proc, ) workflow.transform(valid_dataset).to_parquet( output_path=output_valid_dir, shuffle=nvt_io.Shuffle.PER_WORKER, dtypes=dict_dtypes, cats=cats, conts=conts, labels=labels, out_files_per_proc=out_files_per_proc, ) workflow.save(os.path.join(output_path, "workflow")) return workflow