Beispiel #1
0
def isfinished_bsgscv(n, sossp, sogsp, nt, lpt, qpt, disc, classnum, indofg):
    """
    Determine whether the bsgs algorithm is finished or not yet.
    This is a submodule called by the bsgs module.
    """
    lpt.append(n)
    sumn = 1
    for nid in lpt:
        sumn = sumn * nid
    if sumn == qpt:
        return True, sossp, sogsp
    elif sumn > qpt:
        raise ValueError

    if n == 1:
        return False, sossp, sogsp
    else:
        tpsq = misc.primePowerTest(n)
        if (tpsq[1] != 0) and ((tpsq[1] % 2) == 0):
            q = arith1.floorsqrt(n)
        else:
            q = arith1.floorsqrt(n) + 1

    ss = sossp.retel()
    new_sossp = ClassGroup(disc, classnum, [])
    tnt = copy.deepcopy(nt)
    for i in range(q):
        base = tnt ** i
        for ssi in ss:
            newel = base * ssi
            if new_sossp.search(newel) is False:
                newel.alpha = ssi.alpha[:]
                lenal = len(newel.alpha)
                sfind = indofg - lenal
                for sit in range(sfind):
                    newel.alpha.append([lenal + sit, 0, 0])
                newel.alpha.append([indofg, tnt, i])
                new_sossp.insttree(newel) # multiple of two elements of G

    y = nt ** q
    ltl = sogsp.retel()
    new_sogsp = ClassGroup(disc, classnum, [])
    for i in range(q + 1):
        base = y ** (-i)
        for eol in ltl:
            newel2 = base * eol
            if new_sogsp.search(newel2) is False:
                newel2.beta = eol.beta[:]
                lenbt = len(newel2.beta)
                gfind = indofg - lenbt
                for git in range(gfind):
                    newel2.beta.append([lenbt + git, 0, 0])
                newel2.beta.append([indofg, tnt, q * (-i)])
                new_sogsp.insttree(newel2) # multiple of two elements of G

    return False, new_sossp, new_sogsp
Beispiel #2
0
 def testFloorsqrt(self):
     self.assertEqual(0, arith1.floorsqrt(0))
     self.assertEqual(1, arith1.floorsqrt(1))
     self.assertEqual(1, arith1.floorsqrt(3))
     self.assertEqual(2, arith1.floorsqrt(4))
     self.assertEqual(3, arith1.floorsqrt(10))
     self.assertEqual(arith1.floorsqrt(400000000000000000000), 20000000000)
     self.assertEqual(arith1.floorsqrt(400000000000000000000 - 1),
                      19999999999)
     self.assertTrue(arith1.floorsqrt(2**60 - 1)**2 <= 2**60 - 1)
     self.assertTrue(arith1.floorsqrt(2**59 - 1)**2 <= 2**59 - 1)
Beispiel #3
0
def _lucas_test_sequence(n, a, b):
    """
    Return x_0, x_1, x_m, x_{m+1} of Lucas sequence of parameter a, b,
    where m = (n - (a**2 - 4*b / n)) // 2.
    """
    d = a**2 - 4*b
    if (d >= 0 and arith1.floorsqrt(d) ** 2 == d) \
    or not(gcd.coprime(n, 2*a*b*d)):
        raise ValueError("Choose another parameters.")

    x_0 = 2
    inv_b = arith1.inverse(b, n)
    x_1 = ((a ** 2) * inv_b - 2) % n

    # Chain functions
    def even_step(u):
        """
        'double' u.
        """
        return (u**2 - x_0) % n

    def odd_step(u, v):
        """
        'add' u and v.
        """
        return (u*v - x_1) % n

    m = (n - arith1.legendre(d, n)) // 2
    x_m, x_mplus1 = Lucas_chain(m, even_step, odd_step, x_0, x_1)

    return x_0, x_1, x_m, x_mplus1
Beispiel #4
0
def _lucas_test_sequence(n, a, b):
    """
    Return x_0, x_1, x_m, x_{m+1} of Lucas sequence of parameter a, b,
    where m = (n - (a**2 - 4*b / n)) >> 1.
    """
    d = a**2 - 4 * b
    if (d >= 0 and arith1.floorsqrt(d) ** 2 == d) \
    or not(gcd.coprime(n, 2*a*b*d)):
        raise ValueError("Choose another parameters.")

    x_0 = 2
    inv_b = arith1.inverse(b, n)
    x_1 = ((a**2) * inv_b - 2) % n

    # Chain functions
    def even_step(u):
        """
        'double' u.
        """
        return (u**2 - x_0) % n

    def odd_step(u, v):
        """
        'add' u and v.
        """
        return (u * v - x_1) % n

    m = (n - arith1.legendre(d, n)) >> 1
    x_m, x_mplus1 = Lucas_chain(m, even_step, odd_step, x_0, x_1)

    return x_0, x_1, x_m, x_mplus1
def cornacchia(d, p):
    """
    Return the solution of x^2 + d * y^2 = p .
    p be a prime and d be an integer such that 0 < d < p.
    """
    if (d <= 0) or (d >= p):
        raise ValueError("invalid input")
    k = arith1.legendre(-d, p)
    if k == -1:
        raise ValueError("no solution")
    x0 = arith1.modsqrt(-d, p)
    if x0 < (p / 2):
        x0 = p - x0
    a = p
    b = x0
    l = arith1.floorsqrt(p)
    while b > l:
        a, b = b, a % b
    c, r = divmod(p - b * b, d)
    if r:
        raise ValueError("no solution")
    t = arith1.issquare(c)
    if t == 0:
        raise ValueError("no solution")
    else:
        return (b, t)
Beispiel #6
0
def cornacchiamodify(d, p):
    """
    Algorithm 26 (Modified cornacchia)
    Input : p be a prime and d be an integer such that d < 0 and d > -4p with
            d = 0, 1 (mod 4)
    Output : the solution of u^2 -d * v^2 = 4p.
    """
    q = 4 * p
    if (d >= 0) or (d <= -q):
        raise ValueError("invalid input")
    if p == 2:
        b = arith1.issquare(d + 8)
        if b:
            return (b, 1)
        else:
            raise ValueError("no solution")
    if arith1.legendre(d, p) == -1:
        raise ValueError("no solution")
    x0 = arith1.modsqrt(d, p)
    if (x0 - d) & 1:
        x0 = p - x0
    a = 2 * p
    b = x0
    l = arith1.floorsqrt(q)
    while b > l:
        a, b = b, a % b
    c, r = divmod(q - b * b, -d)
    if r:
        raise ValueError("no solution")
    t = arith1.issquare(c)
    if t:
        return (b, t)
    else:
        raise ValueError("no solution")
Beispiel #7
0
def cornacchia(d, p):
    """
    Return the solution of x^2 + d * y^2 = p .
    p be a prime and d be an integer such that 0 < d < p.
    """
    if (d <= 0) or (d >= p):
        raise ValueError("invalid input")
    k = arith1.legendre(-d, p)
    if k == -1:
        raise ValueError("no solution")
    x0 = arith1.modsqrt(-d, p)
    if x0 < (p / 2):
        x0 = p - x0
    a = p
    b = x0
    l = arith1.floorsqrt(p)
    while b > l:
        a, b = b, a % b
    c, r = divmod(p - b * b, d)
    if r:
        raise ValueError("no solution")
    t = arith1.issquare(c)
    if t == 0:
        raise ValueError("no solution")
    else:
        return (b, t)
Beispiel #8
0
def cornacchiamodify(d, p):
    """
    Algorithm 26 (Modified cornacchia)
    Input : p be a prime and d be an integer such that d < 0 and d > -4p with
            d = 0, 1 (mod 4)
    Output : the solution of u^2 -d * v^2 = 4p.
    """
    q = 4 * p
    if (d >= 0) or (d <= -q):
        raise ValueError("invalid input")
    if p == 2:
        b = arith1.issquare(d + 8)
        if b:
            return (b, 1)
        else:
            raise ValueError("no solution")
    if arith1.legendre(d, p) == -1:
        raise ValueError("no solution")
    x0 = arith1.modsqrt(d, p)
    if (x0 - d) % 2 != 0:
        x0 = p - x0
    a = 2 * p
    b = x0
    l = arith1.floorsqrt(q)
    while b > l:
        a, b = b, a % b
    c, r = divmod(q - b * b, -d)
    if r:
        raise ValueError("no solution")
    t = arith1.issquare(c)
    if t:
        return (b, t)
    else:
        raise ValueError("no solution")
Beispiel #9
0
def trialDivision(n, bound=0):
    """
    Trial division primality test for an odd natural number.
    Optional second argument is a search bound of primes.
    If the bound is given and less than the sqaure root of n
    and True is returned, it only means there is no prime factor
    less than the bound.
    """

    if bound:
        m = min(bound, arith1.floorsqrt(n))
    else:
        m = arith1.floorsqrt(n)
    for p in bigrange.range(3, m+1, 2):
        if not (n % p):
            return False
    return True
Beispiel #10
0
def trialDivision(n, bound=0):
    """
    Trial division primality test for an odd natural number.
    Optional second argument is a search bound of primes.
    If the bound is given and less than the sqaure root of n
    and True is returned, it only means there is no prime factor
    less than the bound.
    """

    if bound:
        m = min(bound, arith1.floorsqrt(n))
    else:
        m = arith1.floorsqrt(n)
    for p in bigrange.range(3, m + 1, 2):
        if not (n % p):
            return False
    return True
Beispiel #11
0
def generator_eratosthenes(n):
    """
    Generate primes up to n (inclusive) using Eratosthenes sieve.
    """
    if n < 2:
        return

    yield 2
    if n <= 2:
        return

    yield 3

    # make list for sieve
    sieve_len_max = (n + 1) >> 1
    sieve = [True, False, True]
    sieve_len = 3
    k = 5
    i = 2
    while sieve_len < sieve_len_max:
        if sieve[i]:
            yield k
            sieve_len *= k
            if sieve_len_max < sieve_len:
                sieve_len //= k
                # adjust sieve list length
                sieve *= sieve_len_max // sieve_len
                sieve += sieve[:(sieve_len_max - len(sieve))]
                sieve_len = sieve_len_max
            else:
                sieve = sieve * k
            for j in range(i, sieve_len, k):
                sieve[j] = False
        k += 2
        i += 1

    # sieve
    limit = arith1.floorsqrt(n)
    while k <= limit:
        if sieve[i]:
            yield k
            j = (k**2 - 1) >> 1
            while j < sieve_len_max:
                sieve[j] = False
                j += k
        k += 2
        i += 1

    # output result
    limit = (n - 1) >> 1
    while i <= limit:
        if sieve[i]:
            yield 2 * i + 1
        i += 1
Beispiel #12
0
def class_number_bsgs(disc):
    """
    Return the class number with the given discriminant.
    """
    if disc % 4 not in (0, 1):
        raise ValueError("a discriminant must be 0 or 1 mod 4")

    if disc >= 0:
        raise ValueError("a discriminant must be negative")

    lx = max(arith1.floorpowerroot(abs(disc), 5), 500 * (math.log(abs(disc)))**2)
    uprbd = int(class_formula(disc, int(lx)) * 3 / 2)
    lwrbd = uprbd // 2 + 1
    bounds = [lwrbd, uprbd]

    # get the unit
    element = RetNext(disc)
    ut = element.unit()

    # append the unit to subset of G
    sossp = ClassGroup(disc, 0, [])
    sogsp = ClassGroup(disc, 0, [])
    sossp.insttree(ut)
    sogsp.insttree(ut)

    h = 1 # order
    finished = False
    while not finished:
        mstp1 = bounds[1] - bounds[0]
        if mstp1 <= 1:
            q = 1
        else:
            q = arith1.floorsqrt(mstp1)
            if misc.primePowerTest(mstp1)[1] != 2:
                q += 1
        # get next element
        nt = element.retnext()
        # x is the set of elements of G
        x = [ut, nt ** h]
        if q > 2:
            x.extend([0] * (q - 2))
        # compute small steps
        if x[1] == ut:
            # compute the order of nt
            n = trorder(h, sossp, sogsp, nt, disc)
        else:
            n = trbabysp(q, x, bounds, sossp, sogsp, ut, h, nt, disc)

        # finished?
        finished, h, sossp, sogsp = isfinished_trbsgs(lwrbd, bounds, h, n, sossp, sogsp, nt, disc)

    return h
Beispiel #13
0
def isfinished_trbsgs(lwrbd, bounds, h, n, sossp, sogsp, nt, disc):
    """
    Determine whether bsgs is finished or not yet.
    This is a submodule called by the bsgs module.

    lwrbd, h, n: int
    nt: element
    """
    h *= n
    if h >= lwrbd:
        result = True
    elif n == 1:
        result = False
    else:
        bounds[0] = (bounds[0] + n - 1) // n # ceil of lower bound // n
        bounds[1] = bounds[1] // n # floor of upper bound // n
        q = arith1.floorsqrt(n)
        if misc.primePowerTest(n)[1] != 2:
            q = arith1.floorsqrt(n) + 1 # ceil of sqrt
        sossp, sogsp = _update_subgrps(q, nt, sossp, sogsp, disc)
        result = False

    return result, h, sossp, sogsp
Beispiel #14
0
def apr(n):
    """
    apr is the main function for Adleman-Pomerance-Rumery primality test.
    Assuming n has no prime factors less than 32.
    Assuming n is spsp for several bases.
    """
    L = Status()

    rb = arith1.floorsqrt(n) + 1
    el = TestPrime()
    while el.et <= rb:
        el = el.next()

    plist = el.t.factors.keys()
    plist.remove(2)
    L.yet(2)
    for p in plist:
        if pow(n, p-1, p*p) != 1:
            L.done(p)
        else:
            L.yet(p)
    qlist = el.et.factors.keys()
    qlist.remove(2)
    J = JacobiSum()
    for q in qlist:
        for p in plist:
            if (q-1) % p != 0:
                continue
            if not L.subodd(p, q, n, J):
                return False
        k = arith1.vp(q-1, 2)[0]
        if k == 1:
            if not L.sub2(q, n):
                return False
        elif k == 2:
            if not L.sub4(q, n, J):
                return False
        else:
            if not L.sub8(q, k, n, J):
                return False
    for p in L.yet_keys():
        if not L.subrest(p, n, el.et, J):
            return False
    r = int(n)
    for _ in bigrange.range(1, el.t.integer):
        r = (r*n) % el.et.integer
        if n % r == 0 and r != 1 and r != n:
            _log.info("%s divides %s.\n" %(r, n))
            return False
    return True
Beispiel #15
0
def apr(n):
    """
    apr is the main function for Adleman-Pomerance-Rumery primality test.
    Assuming n has no prime factors less than 32.
    Assuming n is spsp for several bases.
    """
    L = Status()

    rb = arith1.floorsqrt(n) + 1
    el = TestPrime()
    while el.et <= rb:
        el = next(el)

    plist = list(el.t.factors.keys())
    plist.remove(2)
    L.yet(2)
    for p in plist:
        if pow(n, p - 1, p * p) != 1:
            L.done(p)
        else:
            L.yet(p)
    qlist = list(el.et.factors.keys())
    qlist.remove(2)
    J = JacobiSum()
    for q in qlist:
        for p in plist:
            if (q - 1) % p != 0:
                continue
            if not L.subodd(p, q, n, J):
                return False
        k = arith1.vp(q - 1, 2)[0]
        if k == 1:
            if not L.sub2(q, n):
                return False
        elif k == 2:
            if not L.sub4(q, n, J):
                return False
        else:
            if not L.sub8(q, k, n, J):
                return False
    for p in L.yet_keys():
        if not L.subrest(p, n, el.et, J):
            return False
    r = int(n)
    for _ in bigrange.range(1, el.t.integer):
        r = (r * n) % el.et.integer
        if n % r == 0 and r != 1 and r != n:
            _log.info("%s divides %s.\n" % (r, n))
            return False
    return True
Beispiel #16
0
def babyspcv(bounds, sossp, sogsp, utwi, nt, disc, classnum):
    """
    Compute small steps
    """
    mstp1 = bounds[1] - bounds[0]
    if (mstp1 == 0) or (mstp1 == 1):
        q = 1
    else:
        tppm = misc.primePowerTest(mstp1)
        q = arith1.floorsqrt(mstp1)
        if (tppm[1] == 0) or (tppm[1] % 2):
            q += 1

    n_should_be_set = True
    # initialize
    c_s1 = ClassGroup(disc, classnum, []) # a subset of G

    # extracting i = 0 case of main loop
    for ttr in sossp.retel():
        tmpx = ttr
        tmpx.s_parent = ttr # tmpx belongs ttr in the set of smallstep
        # index of the element
        tmpx.ind = 0
        c_s1.insttree(tmpx)

    # main loop
    x_i = nt
    for i in range(1, q):
        for ttr in sossp.retel():
            tmpx = x_i * ttr
            tmpx.s_parent = ttr # tmpx belongs ttr in the set of smallstep
            if n_should_be_set and tmpx == utwi:
                n = i
                tmp_ss = tmpx.s_parent
                tmp_gs = utwi
                n_should_be_set = False
            # index of the element
            tmpx.ind = i
            c_s1.insttree(tmpx)
        x_i = nt * x_i
    assert x_i == nt ** q

    if n_should_be_set:
        sz = nt ** bounds[0]
        n, tmp_ss, tmp_gs = giantspcv(q, sz, x_i, c_s1, bounds, sogsp)
    return ordercv(n, sossp, sogsp, nt, disc, classnum, tmp_ss, tmp_gs)
Beispiel #17
0
 def _parse_seq(self, options):
     """
     Parse 'options' to define trial sequaence.
     """
     if 'start' in options and 'stop' in options:
         if 'step' in options:
             trials = bigrange.range(options['start'], options['stop'], options['step'])
         else:
             trials = bigrange.range(options['start'], options['stop'])
     elif 'iterator' in options:
         trials = options['iterator']
     elif 'eratosthenes' in options:
         trials = prime.generator_eratosthenes(options['eratosthenes'])
     elif options['n'] < 1000000:
         trials = prime.generator_eratosthenes(arith1.floorsqrt(options['n']))
     else:
         trials = prime.generator()
     return trials
Beispiel #18
0
def cornacchia_smith(p, d):
    '''
    modified Cornacchia's Algorithm to solve a^2 + b^2 |D| = 4p for a and b
    Args:
        p:
        d:

    Returns:
        a, b such that a^2 + b^2 |D| = 4p

    '''
    # check input
    if not -4 * p < d < 0:
        raise ValueError(" -4p < D < 0 not true.")
    elif not (d % 4 in {0, 1}):
        raise ValueError(" D = 0, 1 (mod 4) not true.")

    # case where p=2
    if p == 2:
        r = sqrt(d + 8)
        if r != -1:
            return r, 1
        else:
            return None
    # test for solvability
    if jacobi(d % p, p) < 1:
        return None

    x = modsqrt(d, p)
    if (x % 2) != (d % 2):
        x = p - x
    # euclid chain
    a, b = (2 * p, x)
    c = floorsqrt(4 * p)
    while b > c:
        a, b = b, a % b

    t = 4 * p - b * b
    if t % (-d) != 0:
        return None
    if not issquare(t / (-d)):
        return None
    return b, int(mpmath.sqrt(t / -d))
Beispiel #19
0
 def _parse_seq(self, options):
     """
     Parse 'options' to define trial sequaence.
     """
     if 'start' in options and 'stop' in options:
         if 'step' in options:
             trials = bigrange.range(options['start'], options['stop'],
                                     options['step'])
         else:
             trials = bigrange.range(options['start'], options['stop'])
     elif 'iterator' in options:
         trials = options['iterator']
     elif 'eratosthenes' in options:
         trials = prime.generator_eratosthenes(options['eratosthenes'])
     elif options['n'] < 1000000:
         trials = prime.generator_eratosthenes(
             arith1.floorsqrt(options['n']))
     else:
         trials = prime.generator()
     return trials
Beispiel #20
0
def mpqsfind(n, s=0, f=0, m=0, verbose=False):
    """
    This is main function of MPQS.
    Arguments are (composite_number, sieve_range, factorbase_size, multiplier)
    You must input composite_number at least.
    """
    # verbosity
    if verbose:
        _log.setLevel(logging.DEBUG)
        _log.debug("verbose")
    else:
        _log.setLevel(logging.NOTSET)

    starttime = time.time()
    M = MPQS(n, s, f, m)
    _log.info("Sieve range is [%d, %d]" % (M.move_range[0], M.move_range[-1]))
    _log.info("Factorbase size = %d, Max Factorbase %d" % (len(M.FB), M.maxFB))
    M.get_vector()
    N = M.number // M.multiplier
    V = Elimination(M.smooth)
    A = V.gaussian()
    _log.info("Found %d linearly dependent relations" % len(A))
    differences = []
    for i in A:
        B = V.history[i].keys()
        X = 1
        Y = 1
        for j in B:
            X *= M.smooth[j][1][0]
            Y *= M.smooth[j][1][1]
            Y = Y % M.number
        X = arith1.floorsqrt(X) % M.number
        if X != Y:
            differences.append(X-Y)

    for diff in differences:
        divisor = gcd.gcd(diff, N)
        if 1 < divisor < N:
            _log.info("Total time = %f sec" % (time.time() - starttime))
            return divisor
Beispiel #21
0
def upper_bound_of_coefficient(f):
    """
    upper_bound_of_coefficient(polynomial) -> int

    Compute Landau-Mignotte bound of coefficients of factors, whose
    degree is no greater than half of the given polynomial.  The given
    polynomial must have integer coefficients.
    """
    weight = 0
    for c in f.itercoefficients():
        weight += abs(c)**2
    weight = arith1.floorsqrt(weight) + 1
    degree = f.degree()
    lc = f[degree]
    m = degree // 2 + 1
    bound = 1
    for i in range(1, m):
        b = combinatorial.binomial(m - 1, i) * weight + \
            combinatorial.binomial(m - 1, i - 1) * lc
        if bound < b:
            bound = b
    return bound
Beispiel #22
0
def upper_bound_of_coefficient(f):
    """
    upper_bound_of_coefficient(polynomial) -> int

    Compute Landau-Mignotte bound of coefficients of factors, whose
    degree is no greater than half of the given polynomial.  The given
    polynomial must have integer coefficients.
    """
    weight = 0
    for c in f.itercoefficients():
        weight += abs(c)**2
    weight = arith1.floorsqrt(weight) + 1
    degree = f.degree()
    lc = f[degree]
    m = degree // 2 + 1
    bound = 1
    for i in range(1, m):
        b = combinatorial.binomial(m - 1, i) * weight + \
            combinatorial.binomial(m - 1, i - 1) * lc
        if bound < b:
            bound = b
    return bound
Beispiel #23
0
 def testFloorpowerroot(self):
     self.assertEqual(0, arith1.floorpowerroot(0, 1))
     self.assertEqual(0, arith1.floorpowerroot(0, 4))
     self.assertEqual(0, arith1.floorpowerroot(0, 7))
     self.assertEqual(1, arith1.floorpowerroot(1, 2))
     self.assertEqual(1, arith1.floorpowerroot(1, 6))
     self.assertEqual(1, arith1.floorpowerroot(1, 9))
     self.assertEqual(1, arith1.floorpowerroot(2, 3))
     self.assertEqual(1, arith1.floorpowerroot(2, 7))
     self.assertEqual(2, arith1.floorpowerroot(8, 3))
     self.assertEqual(2, arith1.floorpowerroot(128, 7))
     self.assertEqual((5, 5), arith1.floorpowerroot(5, 1, True))
     self.assertEqual((5, 25), arith1.floorpowerroot(27, 2, True))
     self.assertEqual((0, 0), arith1.floorpowerroot(0, 7, True))
     self.assertEqual((3, 243), arith1.floorpowerroot(245, 5, True))
     self.assertEqual((-3, -243), arith1.floorpowerroot(-245, 5, True))
     for j in range(3, 100, 10):
         k = 5**j
         self.assertEqual(4, arith1.floorpowerroot(k - 1, j))
         self.assertEqual(5, arith1.floorpowerroot(k, j))
         self.assertEqual(5, arith1.floorpowerroot(k + 1, j))
     self.assertEqual(arith1.floorpowerroot(400000000000000000000, 4),
                      arith1.floorsqrt(20000000000))
Beispiel #24
0
def trialDivision(n, **options):
    """
    Return a factor of given integer by trial division.

    options can be either:
    1) 'start' and 'stop' as range parameters.
    2) 'iterator' as an iterator of primes.
    If both options are not given, prime factor is searched from 2
    to the square root of the given integer.
    """
    # verbosity
    verbose = options.get('verbose', False)
    if not verbose:
        _silence()

    if 'start' in options and 'stop' in options:
        if 'step' in options:
            trials = range(options['start'], options['stop'], options['step'])
        else:
            trials = range(options['start'], options['stop'])
    elif 'iterator' in options:
        trials = options['iterator']
    elif n < 1000000:
        trials = prime.generator_eratosthenes(arith1.floorsqrt(n))
    else:
        trials = prime.generator()

    for p in trials:
        if not (n % p):
            if not verbose:
                _verbose()
            return p
        if p ** 2 > n:
            break
    if not verbose:
        _verbose()
    return 1
Beispiel #25
0
def _calc_bound(n, bound=0):
    if bound:
        m = min((bound, arith1.floorsqrt(n)))
    else:
        m = arith1.floorsqrt(n)
    return m
Beispiel #26
0
def _calc_bound(n, bound=0):
    if bound:
        m = min((bound, arith1.floorsqrt(n)))
    else:
        m = arith1.floorsqrt(n)
    return m