Beispiel #1
0
def selectIsomorphismClasses(sols, verbose=1):
    """ Select isomorphism classes from a list of designs 

    Args:
        sols (list of arrays)
        verbose (int)
    Return:
        indices (list of integers): indices of the isomorphism classes
        mm (list of arrays): the arrays in normal form


    Example:
        >>> sols=[oapackage.exampleArray(i) for i in [26,26,27,26]]
        >>> idx, mm = selectIsomorphismClasses(sols)

    To select one representative array from each isomorphism class one can use:
        >>> _, ui = np.unique(idx, return_index=True)
        >>> representatives = [sols[i] for i in ui]

    """

    # perform check on array data type
    mm = []
    for ii, al in enumerate(sols):
        if verbose:
            oapackage.tprint('selectIsomorphismClasses: process aray %d/%d' %
                             (ii, len(sols)))
        al = oapackage.makearraylink(al)

        tt = oapackage.reduceOAnauty(al, verbose >= 2)

        #pp, tt = reduceBliss(al, arrayclass, verbose >= 2)
        #tt = graph2arrayTransformation(pp, arrayclass)
        alx = tt.apply(al)
        mm.append(np.array(alx))
        pass

    # perform uniqueness check
    nn = len(mm)
    qq = np.array([None] * nn, dtype=object)
    for ii in range(nn):
        qq[ii] = mm[ii].flatten()

    # Trick to make unique work...
    nx = qq[0].size
    dt = qq[0].dtype.descr * nx
    qqq = np.array(qq, dtype=dt)

    a, indices = np.unique(qqq, return_inverse=True)

    if verbose >= 1:
        print('selectIsomorphismClasses: reduce %d to %d' %
              (len(sols), np.unique(indices).size))

    return indices, mm
Beispiel #2
0
def selectIsomorphismClasses(sols, verbose=1):
    """ Select isomorphism classes from a list of designs 
    
    Args:
        sols (list of arrays)
        verbose (int)
    Return:
        indices (list of integers): indices of the isomorphism classes
        mm (list of arrays): the arrays in normal form

        
    """

    # perform check on array data type
    mm = []
    for ii, al in enumerate(sols):
        if verbose:
            oapackage.tprint('selectIsomorphismClasses: process aray %d/%d' %
                             (ii, len(sols)),
                             dt=4)
        al = oapackage.makearraylink(al)

        tt = oapackage.reduceOAnauty(al, verbose >= 2)

        #pp, tt = reduceBliss(al, arrayclass, verbose >= 2)
        #tt = graph2arrayTransformation(pp, arrayclass)
        alx = tt.apply(al)
        mm.append(np.array(alx))
        pass

    # perform uniqueness check
    nn = len(mm)
    qq = np.array([None] * nn, dtype=object)
    for ii in range(nn):
        qq[ii] = mm[ii].flatten()

    if 0:
        # Trick to make unique work...
        # old code
        nx = qq[0].size
        dt = qq[0].dtype.descr * nx
        qqq = [np.array(q, dtype=dt) for q in qq]
        qqq = np.array(qq, dtype=dt)
        a, indices = np.unique(qqq, return_inverse=True)

    # Trick to make unique work...
    a, indices = np.unique(np.vstack(qq), axis=0, return_inverse=True)

    if verbose >= 1:
        print('selectIsomorphismClasses: %d reduced to %d' %
              (len(sols), np.unique(indices).size))

    return indices, mm
def optimize_arrays(sols, alpha=None, verbose=1, niter=400):
    """ Optimize set of designs """
    vv2 = []
    ll = oapackage.arraylist_t()
    for ii, A in enumerate(sols):
        Dinit = A.Defficiency()
        Df, Ax = oapackage.optimDeffPython(
            A, niter=niter, verbose=0, alpha=alpha)
        D, Ds, D1 = Ax.Defficiencies()
        ll.push_back(Ax)
        oapackage.tprint('optimize array %d: %f -> D %f Ds %f D1 %f' % (ii, Dinit, D, Ds, D1))
        vv2.append(np.array([D, Ds, D1]))
    return np.array(vv2).T, ll
Beispiel #4
0
def selectIsomorphismClasses(sols, verbose=1):
    """ Select isomorphism classes from a list of designs

    Args:
        sols (list of arrays): list of arrays from which to determine the unique ones
        verbose (int): verbosity level
    Return:
        indices (list of integers): indices of the isomorphism classes
        mm (list of arrays): the arrays in normal form


    Example:
        >>> import oapackage.graphtools; import numpy as np
        >>> sols=[oapackage.exampleArray(idx) for idx in [26,26,27,26]]
        >>> idx, mm = oapackage.graphtools.selectIsomorphismClasses(sols, verbose=0)
        >>> _, unique_indices = np.unique(idx, return_index=True)
        >>> print('found %d isomorphism classes from %d arrays' % (len(unique_indices), len(sols)) )
        found 2 isomorphism classes from 4 arrays
        >>> representatives = [sols[idx] for idx in unique_indices]

    """

    mm = []
    for ii, al in enumerate(sols):
        if verbose:
            oapackage.tprint(
                'selectIsomorphismClasses: process aray %d/%d' % (ii, len(sols)))
        al = oapackage.makearraylink(al)

        tt = oapackage.reduceOAnauty(al, verbose >= 2)

        alx = tt.apply(al)
        mm.append(np.array(alx))

    # perform uniqueness check
    nn = len(mm)
    qq = np.array([None] * nn, dtype=object)
    for ii in range(nn):
        qq[ii] = mm[ii].flatten()

    # Trick to make unique work...
    _, indices = np.unique(np.vstack(qq), axis=0, return_inverse=True)

    if verbose >= 1:
        print('selectIsomorphismClasses: reduce %d to %d' %
              (len(sols), np.unique(indices).size))

    return indices, mm
Beispiel #5
0
def selectIsomorphismClasses(sols, verbose=1):
    """ Select isomorphism classes from a list of designs

    Args:
        sols (list of arrays): list of arrays from which to determine the unique ones
        verbose (int): verbosity level
    Return:
        indices (list of integers): indices of the isomorphism classes
        mm (list of arrays): the arrays in normal form


    Example:
        >>> import oapackage.graphtools; import numpy as np
        >>> sols=[oapackage.exampleArray(idx) for idx in [26,26,27,26]]
        >>> idx, mm = oapackage.graphtools.selectIsomorphismClasses(sols, verbose=0)
        >>> _, unique_indices = np.unique(idx, return_index=True)
        >>> print('found %d isomorphism classes from %d arrays' % (len(unique_indices), len(sols)) )
        found 2 isomorphism classes from 4 arrays
        >>> representatives = [sols[idx] for idx in unique_indices]

    """

    mm = []
    for ii, al in enumerate(sols):
        if verbose:
            oapackage.tprint('selectIsomorphismClasses: process aray %d/%d' %
                             (ii, len(sols)))
        al = oapackage.makearraylink(al)

        tt = oapackage.reduceOAnauty(al, verbose >= 2)

        alx = tt.apply(al)
        mm.append(np.array(alx))

    # perform uniqueness check
    nn = len(mm)
    qq = np.array([None] * nn, dtype=object)
    for ii in range(nn):
        qq[ii] = mm[ii].flatten()

    # Trick to make unique work...
    _, indices = np.unique(np.vstack(qq), axis=0, return_inverse=True)

    if verbose >= 1:
        print('selectIsomorphismClasses: reduce %d to %d' %
              (len(sols), np.unique(indices).size))

    return indices, mm
Beispiel #6
0
def optimize_arrays(sols, alpha=None, verbose=1, niter=400):
    """ Optimize set of designs """
    vv2 = []
    ll = oapackage.arraylist_t()
    for ii, A in enumerate(sols):
        Dinit = A.Defficiency()
        Df, Ax = oapackage.optimDeffPython(A,
                                           niter=niter,
                                           verbose=0,
                                           alpha=alpha)
        D, Ds, D1 = Ax.Defficiencies()
        ll.push_back(Ax)
        oapackage.tprint('optimize array %d: %f -> D %f Ds %f D1 %f' %
                         (ii, Dinit, D, Ds, D1))
        vv2.append(np.array([D, Ds, D1]))
    return np.array(vv2).T, ll
Beispiel #7
0
def read_hadamard(f, narrays=1e9, N=32, k=32):
    """ Read all designs in a file with hex encoding """

    if isinstance(f, str):
        fid = open(f, 'rt')
    else:
        fid = f
    ll = []
    for ii in range(int(narrays)):
        oapackage.tprint('reading array %d' % ii, dt=.5)
        ii = _get_integer(fid)
        if ii == -1:
            break
        al = _get_array(fid, N, k)
        if al is not None:
            ll += [al]
    if isinstance(f, str):
        fid.close()
    print('read_hadamard: %d designs' % len(ll))
    return ll
Beispiel #8
0
infile = oapackage.arrayfile_t(inputfile)
narrays=infile.narrays
#outfile = oapackage.arrayfile_t(outputfile, infile.nrows, infile.ncols, -1, fmode )

if not infile.isopen():
    raise Exception('could not open file %s' % inputfile)

print('oaselect: reading %d arrays from %s' % (infile.narrays, inputfile) )

#%% Loop over the arrays
outlist=[]

if narrays==-1:
    narrays=oapackage.arrayfile_t.NARRAYS_MAX
for ii in range(narrays):
    oapackage.tprint('oaselect: parse array %d/%d'  % (ii, narrays) )
    al=infile.readnext()
    if al.index==-1:
        break
    if verbose>=3:
        print('  index %d'  % al.index)
    if fname=='subset':
        if ii%args.nsubset==0:
            outlist.append(al)
    else:
        if filterArray(al, fname, verbose=0):
            outlist.append(al)
if narrays>0:
    oapackage.tprint('oaselect: parse array %d/%d'  % (ii, narrays), dt=-1 )

oapackage.writearrayfile(outputfile, outlist, fmode, infile.nrows, infile.ncols)