Beispiel #1
0
 def test_box_predictor_builder_calls_fc_argscope_fn(self):
     fc_hyperparams_text_proto = """
   regularizer {
     l1_regularizer {
       weight: 0.0003
     }
   }
   initializer {
     truncated_normal_initializer {
       mean: 0.0
       stddev: 0.3
     }
   }
   activation: RELU_6
   op: FC
 """
     hyperparams_proto = hyperparams_pb2.Hyperparams()
     text_format.Merge(fc_hyperparams_text_proto, hyperparams_proto)
     box_predictor_proto = box_predictor_pb2.BoxPredictor()
     box_predictor_proto.mask_rcnn_box_predictor.fc_hyperparams.CopyFrom(
         hyperparams_proto)
     mock_argscope_fn = mock.Mock(return_value='arg_scope')
     box_predictor = box_predictor_builder.build(
         argscope_fn=mock_argscope_fn,
         box_predictor_config=box_predictor_proto,
         is_training=False,
         num_classes=10)
     mock_argscope_fn.assert_called_with(hyperparams_proto, False)
     self.assertEqual(box_predictor._box_prediction_head._fc_hyperparams_fn,
                      'arg_scope')
     self.assertEqual(
         box_predictor._class_prediction_head._fc_hyperparams_fn,
         'arg_scope')
Beispiel #2
0
    def test_default_rfcn_box_predictor(self):
        conv_hyperparams_text_proto = """
      regularizer {
        l1_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
      activation: RELU_6
    """
        hyperparams_proto = hyperparams_pb2.Hyperparams()
        text_format.Merge(conv_hyperparams_text_proto, hyperparams_proto)

        def mock_conv_argscope_builder(conv_hyperparams_arg, is_training):
            return (conv_hyperparams_arg, is_training)

        box_predictor_proto = box_predictor_pb2.BoxPredictor()
        box_predictor_proto.rfcn_box_predictor.conv_hyperparams.CopyFrom(
            hyperparams_proto)
        box_predictor = box_predictor_builder.build(
            argscope_fn=mock_conv_argscope_builder,
            box_predictor_config=box_predictor_proto,
            is_training=True,
            num_classes=90)
        self.assertEqual(box_predictor.num_classes, 90)
        self.assertTrue(box_predictor._is_training)
        self.assertEqual(box_predictor._box_code_size, 4)
        self.assertEqual(box_predictor._num_spatial_bins, [3, 3])
        self.assertEqual(box_predictor._crop_size, [12, 12])
Beispiel #3
0
 def test_construct_default_conv_box_predictor_with_batch_norm(self):
     box_predictor_text_proto = """
   weight_shared_convolutional_box_predictor {
     conv_hyperparams {
       regularizer {
         l1_regularizer {
         }
       }
       batch_norm {
         train: true
       }
       initializer {
         truncated_normal_initializer {
         }
       }
     }
   }"""
     box_predictor_proto = box_predictor_pb2.BoxPredictor()
     text_format.Merge(box_predictor_text_proto, box_predictor_proto)
     box_predictor = box_predictor_builder.build(
         argscope_fn=hyperparams_builder.build,
         box_predictor_config=box_predictor_proto,
         is_training=True,
         num_classes=90)
     self.assertEqual(box_predictor._depth, 0)
     self.assertEqual(box_predictor._num_layers_before_predictor, 0)
     self.assertEqual(box_predictor.num_classes, 90)
     self.assertTrue(box_predictor._is_training)
     self.assertEqual(box_predictor._apply_batch_norm, True)
Beispiel #4
0
 def test_construct_default_conv_box_predictor(self):
     box_predictor_text_proto = """
   convolutional_box_predictor {
     conv_hyperparams {
       regularizer {
         l1_regularizer {
         }
       }
       initializer {
         truncated_normal_initializer {
         }
       }
     }
   }"""
     box_predictor_proto = box_predictor_pb2.BoxPredictor()
     text_format.Merge(box_predictor_text_proto, box_predictor_proto)
     box_predictor = box_predictor_builder.build(
         argscope_fn=hyperparams_builder.build,
         box_predictor_config=box_predictor_proto,
         is_training=True,
         num_classes=90)
     self.assertEqual(box_predictor._min_depth, 0)
     self.assertEqual(box_predictor._max_depth, 0)
     self.assertEqual(box_predictor._num_layers_before_predictor, 0)
     self.assertTrue(box_predictor._use_dropout)
     self.assertAlmostEqual(box_predictor._dropout_keep_prob, 0.8)
     self.assertFalse(box_predictor._apply_sigmoid_to_scores)
     self.assertEqual(box_predictor.num_classes, 90)
     self.assertTrue(box_predictor._is_training)
     self.assertFalse(box_predictor._use_depthwise)
Beispiel #5
0
    def test_construct_non_default_conv_box_predictor(self):
        box_predictor_text_proto = """
      convolutional_box_predictor {
        min_depth: 2
        max_depth: 16
        num_layers_before_predictor: 2
        use_dropout: false
        dropout_keep_probability: 0.4
        kernel_size: 3
        box_code_size: 3
        apply_sigmoid_to_scores: true
        class_prediction_bias_init: 4.0
        use_depthwise: true
      }
    """
        conv_hyperparams_text_proto = """
      regularizer {
        l1_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
    """
        hyperparams_proto = hyperparams_pb2.Hyperparams()
        text_format.Merge(conv_hyperparams_text_proto, hyperparams_proto)

        def mock_conv_argscope_builder(conv_hyperparams_arg, is_training):
            return (conv_hyperparams_arg, is_training)

        box_predictor_proto = box_predictor_pb2.BoxPredictor()
        text_format.Merge(box_predictor_text_proto, box_predictor_proto)
        box_predictor_proto.convolutional_box_predictor.conv_hyperparams.CopyFrom(
            hyperparams_proto)
        box_predictor = box_predictor_builder.build(
            argscope_fn=mock_conv_argscope_builder,
            box_predictor_config=box_predictor_proto,
            is_training=False,
            num_classes=10)
        self.assertEqual(box_predictor._min_depth, 2)
        self.assertEqual(box_predictor._max_depth, 16)
        self.assertEqual(box_predictor._num_layers_before_predictor, 2)
        self.assertFalse(box_predictor._use_dropout)
        self.assertAlmostEqual(box_predictor._dropout_keep_prob, 0.4)
        self.assertTrue(box_predictor._apply_sigmoid_to_scores)
        self.assertAlmostEqual(box_predictor._class_prediction_bias_init, 4.0)
        self.assertEqual(box_predictor.num_classes, 10)
        self.assertFalse(box_predictor._is_training)
        self.assertTrue(box_predictor._use_depthwise)
Beispiel #6
0
    def test_non_default_mask_rcnn_box_predictor(self):
        fc_hyperparams_text_proto = """
      regularizer {
        l1_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
      activation: RELU_6
      op: FC
    """
        box_predictor_text_proto = """
      mask_rcnn_box_predictor {
        use_dropout: true
        dropout_keep_probability: 0.8
        box_code_size: 3
        share_box_across_classes: true
      }
    """
        hyperparams_proto = hyperparams_pb2.Hyperparams()
        text_format.Merge(fc_hyperparams_text_proto, hyperparams_proto)

        def mock_fc_argscope_builder(fc_hyperparams_arg, is_training):
            return (fc_hyperparams_arg, is_training)

        box_predictor_proto = box_predictor_pb2.BoxPredictor()
        text_format.Merge(box_predictor_text_proto, box_predictor_proto)
        box_predictor_proto.mask_rcnn_box_predictor.fc_hyperparams.CopyFrom(
            hyperparams_proto)
        box_predictor = box_predictor_builder.build(
            argscope_fn=mock_fc_argscope_builder,
            box_predictor_config=box_predictor_proto,
            is_training=True,
            num_classes=90)
        box_head = box_predictor._box_prediction_head
        class_head = box_predictor._class_prediction_head
        self.assertTrue(box_head._use_dropout)
        self.assertTrue(class_head._use_dropout)
        self.assertAlmostEqual(box_head._dropout_keep_prob, 0.8)
        self.assertAlmostEqual(class_head._dropout_keep_prob, 0.8)
        self.assertEqual(box_predictor.num_classes, 90)
        self.assertTrue(box_predictor._is_training)
        self.assertEqual(box_head._box_code_size, 3)
        self.assertEqual(box_head._share_box_across_classes, True)
Beispiel #7
0
    def test_box_predictor_calls_fc_argscope_fn(self):
        conv_hyperparams_text_proto = """
      regularizer {
        l1_regularizer {
          weight: 0.0003
        }
      }
      initializer {
        truncated_normal_initializer {
          mean: 0.0
          stddev: 0.3
        }
      }
      activation: RELU_6
    """
        hyperparams_proto = hyperparams_pb2.Hyperparams()
        text_format.Merge(conv_hyperparams_text_proto, hyperparams_proto)

        def mock_conv_argscope_builder(conv_hyperparams_arg, is_training):
            return (conv_hyperparams_arg, is_training)

        box_predictor_proto = box_predictor_pb2.BoxPredictor()
        box_predictor_proto.rfcn_box_predictor.conv_hyperparams.CopyFrom(
            hyperparams_proto)
        box_predictor = box_predictor_builder.build(
            argscope_fn=mock_conv_argscope_builder,
            box_predictor_config=box_predictor_proto,
            is_training=False,
            num_classes=10)
        (conv_hyperparams_actual,
         is_training) = box_predictor._conv_hyperparams_fn
        self.assertAlmostEqual(
            (hyperparams_proto.regularizer.l1_regularizer.weight),
            (conv_hyperparams_actual.regularizer.l1_regularizer.weight))
        self.assertAlmostEqual((
            hyperparams_proto.initializer.truncated_normal_initializer.stddev),
                               (conv_hyperparams_actual.initializer.
                                truncated_normal_initializer.stddev))
        self.assertAlmostEqual(
            (hyperparams_proto.initializer.truncated_normal_initializer.mean),
            (conv_hyperparams_actual.initializer.truncated_normal_initializer.
             mean))
        self.assertEqual(hyperparams_proto.activation,
                         conv_hyperparams_actual.activation)
        self.assertFalse(is_training)
Beispiel #8
0
 def test_build_default_mask_rcnn_box_predictor(self):
     box_predictor_proto = box_predictor_pb2.BoxPredictor()
     box_predictor_proto.mask_rcnn_box_predictor.fc_hyperparams.op = (
         hyperparams_pb2.Hyperparams.FC)
     box_predictor = box_predictor_builder.build(
         argscope_fn=mock.Mock(return_value='arg_scope'),
         box_predictor_config=box_predictor_proto,
         is_training=True,
         num_classes=90)
     box_head = box_predictor._box_prediction_head
     class_head = box_predictor._class_prediction_head
     self.assertFalse(box_head._use_dropout)
     self.assertFalse(class_head._use_dropout)
     self.assertAlmostEqual(box_head._dropout_keep_prob, 0.5)
     self.assertEqual(box_predictor.num_classes, 90)
     self.assertTrue(box_predictor._is_training)
     self.assertEqual(box_head._box_code_size, 4)
     self.assertEqual(len(box_predictor._third_stage_heads.keys()), 0)
Beispiel #9
0
    def test_construct_non_default_conv_box_predictor(self):
        box_predictor_text_proto = """
      weight_shared_convolutional_box_predictor {
        depth: 2
        num_layers_before_predictor: 2
        kernel_size: 7
        box_code_size: 3
        class_prediction_bias_init: 4.0
      }
    """
        conv_hyperparams_text_proto = """
      regularizer {
        l1_regularizer {
        }
      }
      initializer {
        truncated_normal_initializer {
        }
      }
    """
        hyperparams_proto = hyperparams_pb2.Hyperparams()
        text_format.Merge(conv_hyperparams_text_proto, hyperparams_proto)

        def mock_conv_argscope_builder(conv_hyperparams_arg, is_training):
            return (conv_hyperparams_arg, is_training)

        box_predictor_proto = box_predictor_pb2.BoxPredictor()
        text_format.Merge(box_predictor_text_proto, box_predictor_proto)
        (box_predictor_proto.weight_shared_convolutional_box_predictor.
         conv_hyperparams.CopyFrom(hyperparams_proto))
        box_predictor = box_predictor_builder.build(
            argscope_fn=mock_conv_argscope_builder,
            box_predictor_config=box_predictor_proto,
            is_training=False,
            num_classes=10)
        self.assertEqual(box_predictor._depth, 2)
        self.assertEqual(box_predictor._num_layers_before_predictor, 2)
        self.assertAlmostEqual(box_predictor._class_prediction_bias_init, 4.0)
        self.assertEqual(box_predictor.num_classes, 10)
        self.assertFalse(box_predictor._is_training)
        self.assertEqual(box_predictor._apply_batch_norm, False)
Beispiel #10
0
 def test_build_box_predictor_with_mask_branch(self):
     box_predictor_proto = box_predictor_pb2.BoxPredictor()
     box_predictor_proto.mask_rcnn_box_predictor.fc_hyperparams.op = (
         hyperparams_pb2.Hyperparams.FC)
     box_predictor_proto.mask_rcnn_box_predictor.conv_hyperparams.op = (
         hyperparams_pb2.Hyperparams.CONV)
     box_predictor_proto.mask_rcnn_box_predictor.predict_instance_masks = True
     box_predictor_proto.mask_rcnn_box_predictor.mask_prediction_conv_depth = 512
     box_predictor_proto.mask_rcnn_box_predictor.mask_height = 16
     box_predictor_proto.mask_rcnn_box_predictor.mask_width = 16
     mock_argscope_fn = mock.Mock(return_value='arg_scope')
     box_predictor = box_predictor_builder.build(
         argscope_fn=mock_argscope_fn,
         box_predictor_config=box_predictor_proto,
         is_training=True,
         num_classes=90)
     mock_argscope_fn.assert_has_calls([
         mock.call(
             box_predictor_proto.mask_rcnn_box_predictor.fc_hyperparams,
             True),
         mock.call(
             box_predictor_proto.mask_rcnn_box_predictor.conv_hyperparams,
             True)
     ],
                                       any_order=True)
     box_head = box_predictor._box_prediction_head
     class_head = box_predictor._class_prediction_head
     third_stage_heads = box_predictor._third_stage_heads
     self.assertFalse(box_head._use_dropout)
     self.assertFalse(class_head._use_dropout)
     self.assertAlmostEqual(box_head._dropout_keep_prob, 0.5)
     self.assertAlmostEqual(class_head._dropout_keep_prob, 0.5)
     self.assertEqual(box_predictor.num_classes, 90)
     self.assertTrue(box_predictor._is_training)
     self.assertEqual(box_head._box_code_size, 4)
     self.assertTrue(
         mask_rcnn_box_predictor.MASK_PREDICTIONS in third_stage_heads)
     self.assertEqual(
         third_stage_heads[mask_rcnn_box_predictor.MASK_PREDICTIONS].
         _mask_prediction_conv_depth, 512)