def test_freeze_all_feature_extractor_variables(self):
   grads_and_vars = self._create_grads_and_vars()
   regex_list = ['FeatureExtractor/.*']
   grads_and_vars = variables_helper.freeze_gradients_matching_regex(
       grads_and_vars, regex_list)
   exp_output = [(3.0, 3.0), (4.0, 4.0)]
   init_op = tf.global_variables_initializer()
   with self.test_session() as sess:
     sess.run(init_op)
     output = sess.run(grads_and_vars)
     self.assertItemsEqual(output, exp_output)
Beispiel #2
0
 def test_freeze_all_feature_extractor_variables(self):
   grads_and_vars = self._create_grads_and_vars()
   regex_list = ['FeatureExtractor/.*']
   grads_and_vars = variables_helper.freeze_gradients_matching_regex(
       grads_and_vars, regex_list)
   exp_output = [(3.0, 3.0), (4.0, 4.0)]
   init_op = tf.global_variables_initializer()
   with self.test_session() as sess:
     sess.run(init_op)
     output = sess.run(grads_and_vars)
     self.assertItemsEqual(output, exp_output)
            def _single_update():
                kwargs = {}
                _training_optimizer = training_optimizer
                kwargs['var_list'] = None
                update_ops = _get_update_ops()
                total_loss, grads_and_vars = model_deploy.optimize_clones(
                    clones,
                    _training_optimizer,
                    regularization_losses=None,
                    **kwargs)

                # Optionaly multiply gradients by train_config.{grad_multiplier,
                # divide_grad_by_batch}.
                if train_config.grad_multiplier or train_config.divide_grad_by_batch:
                    base_multiplier = train_config.grad_multiplier \
                        if train_config.grad_multiplier else 1.0
                    batch_divider = float(train_config.batch_size) \
                        if train_config.divide_grad_by_batch else 1.0
                    total_multiplier = base_multiplier / batch_divider
                    grads_and_vars = variables_helper.multiply_gradients_by_scalar_multiplier(
                        grads_and_vars, multiplier=total_multiplier)

                # Optionally multiply bias gradients by train_config.bias_grad_multiplier.
                if train_config.bias_grad_multiplier:
                    biases_regex_list = ['.*/biases']
                    grads_and_vars = variables_helper.multiply_gradients_matching_regex(
                        grads_and_vars,
                        biases_regex_list,
                        multiplier=train_config.bias_grad_multiplier)

                # Optionally freeze some layers by setting their gradients to be zero.
                if train_config.freeze_variables:
                    grads_and_vars = variables_helper.freeze_gradients_matching_regex(
                        grads_and_vars, train_config.freeze_variables)

                # Optionally clip gradients
                if train_config.gradient_clipping_by_norm > 0:
                    with tf.name_scope('clip_grads'):
                        grads_and_vars = slim.learning.clip_gradient_norms(
                            grads_and_vars,
                            train_config.gradient_clipping_by_norm)

                # Create gradient updates.
                grad_updates = _training_optimizer.apply_gradients(
                    grads_and_vars, global_step=global_step)
                # update_ops.append(grad_updates)
                total_update_ops = update_ops + [grad_updates]

                update_op = tf.group(*total_update_ops)
                with tf.control_dependencies([update_op]):
                    train_tensor = tf.identity(total_loss, name=('train_op'))
                return train_tensor
Beispiel #4
0
def train(create_tensor_dict_fn, create_model_fn, train_config, master, task,
          num_clones, worker_replicas, clone_on_cpu, ps_tasks, worker_job_name,
          is_chief, train_dir):
    """Training function for detection models.

  Args:
    create_tensor_dict_fn: a function to create a tensor input dictionary.
    create_model_fn: a function that creates a DetectionModel and generates
                     losses.
    train_config: a train_pb2.TrainConfig protobuf.
    master: BNS name of the TensorFlow master to use.
    task: The task id of this training instance.
    num_clones: The number of clones to run per machine.
    worker_replicas: The number of work replicas to train with.
    clone_on_cpu: True if clones should be forced to run on CPU.
    ps_tasks: Number of parameter server tasks.
    worker_job_name: Name of the worker job.
    is_chief: Whether this replica is the chief replica.
    train_dir: Directory to write checkpoints and training summaries to.
  """

    detection_model = create_model_fn()
    data_augmentation_options = [
        preprocessor_builder.build(step)
        for step in train_config.data_augmentation_options
    ]

    with tf.Graph().as_default():
        # Build a configuration specifying multi-GPU and multi-replicas.
        deploy_config = model_deploy.DeploymentConfig(
            num_clones=num_clones,
            clone_on_cpu=clone_on_cpu,
            replica_id=task,
            num_replicas=worker_replicas,
            num_ps_tasks=ps_tasks,
            worker_job_name=worker_job_name)

        # Place the global step on the device storing the variables.
        with tf.device(deploy_config.variables_device()):
            global_step = tf.train.create_global_step()

        with tf.device(deploy_config.inputs_device()):
            input_queue = create_input_queue(
                train_config.batch_size // num_clones, create_tensor_dict_fn,
                train_config.batch_queue_capacity,
                train_config.num_batch_queue_threads,
                train_config.prefetch_queue_capacity,
                data_augmentation_options)

        # Gather initial summaries.
        # TODO(rathodv): See if summaries can be added/extracted from global tf
        # collections so that they don't have to be passed around.
        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
        global_summaries = set([])

        model_fn = functools.partial(_create_losses,
                                     create_model_fn=create_model_fn,
                                     train_config=train_config)
        clones = model_deploy.create_clones(deploy_config, model_fn,
                                            [input_queue])
        first_clone_scope = clones[0].scope

        # Gather update_ops from the first clone. These contain, for example,
        # the updates for the batch_norm variables created by model_fn.
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,
                                       first_clone_scope)

        with tf.device(deploy_config.optimizer_device()):
            training_optimizer = optimizer_builder.build(
                train_config.optimizer, global_summaries)

        sync_optimizer = None
        if train_config.sync_replicas:
            training_optimizer = tf.SyncReplicasOptimizer(
                training_optimizer,
                replicas_to_aggregate=train_config.replicas_to_aggregate,
                total_num_replicas=train_config.worker_replicas)
            sync_optimizer = training_optimizer

        # Create ops required to initialize the model from a given checkpoint.
        init_fn = None
        if train_config.fine_tune_checkpoint:
            var_map = detection_model.restore_map(
                from_detection_checkpoint=train_config.
                from_detection_checkpoint)
            available_var_map = (
                variables_helper.get_variables_available_in_checkpoint(
                    var_map, train_config.fine_tune_checkpoint))
            init_saver = tf.train.Saver(available_var_map)

            def initializer_fn(sess):
                init_saver.restore(sess, train_config.fine_tune_checkpoint)

            init_fn = initializer_fn

        with tf.device(deploy_config.optimizer_device()):
            total_loss, grads_and_vars = model_deploy.optimize_clones(
                clones, training_optimizer, regularization_losses=None)
            total_loss = tf.check_numerics(total_loss,
                                           'LossTensor is inf or nan.')

            # Optionally multiply bias gradients by train_config.bias_grad_multiplier.
            if train_config.bias_grad_multiplier:
                biases_regex_list = ['.*/biases']
                grads_and_vars = variables_helper.multiply_gradients_matching_regex(
                    grads_and_vars,
                    biases_regex_list,
                    multiplier=train_config.bias_grad_multiplier)

            # Optionally freeze some layers by setting their gradients to be zero.
            if train_config.freeze_variables:
                grads_and_vars = variables_helper.freeze_gradients_matching_regex(
                    grads_and_vars, train_config.freeze_variables)

            # Optionally clip gradients
            if train_config.gradient_clipping_by_norm > 0:
                with tf.name_scope('clip_grads'):
                    grads_and_vars = slim.learning.clip_gradient_norms(
                        grads_and_vars, train_config.gradient_clipping_by_norm)

            # Create gradient updates.
            grad_updates = training_optimizer.apply_gradients(
                grads_and_vars, global_step=global_step)
            update_ops.append(grad_updates)

            update_op = tf.group(*update_ops)
            with tf.control_dependencies([update_op]):
                train_tensor = tf.identity(total_loss, name='train_op')

        # Add summaries.
        for model_var in slim.get_model_variables():
            global_summaries.add(
                tf.summary.histogram(model_var.op.name, model_var))
        for loss_tensor in tf.losses.get_losses():
            global_summaries.add(
                tf.summary.scalar(loss_tensor.op.name, loss_tensor))
        global_summaries.add(
            tf.summary.scalar('TotalLoss', tf.losses.get_total_loss()))

        # Add the summaries from the first clone. These contain the summaries
        # created by model_fn and either optimize_clones() or _gather_clone_loss().
        summaries |= set(
            tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope))
        summaries |= global_summaries

        # Merge all summaries together.
        summary_op = tf.summary.merge(list(summaries), name='summary_op')

        # Soft placement allows placing on CPU ops without GPU implementation.
        session_config = tf.ConfigProto(allow_soft_placement=True,
                                        log_device_placement=False)

        session_config.gpu_options.allow_growth = True

        # Save checkpoints regularly.
        keep_checkpoint_every_n_hours = train_config.keep_checkpoint_every_n_hours
        saver = tf.train.Saver(
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)

        slim.learning.train(
            train_tensor,
            logdir=train_dir,
            master=master,
            is_chief=is_chief,
            session_config=session_config,
            startup_delay_steps=train_config.startup_delay_steps,
            init_fn=init_fn,
            summary_op=summary_op,
            number_of_steps=(train_config.num_steps
                             if train_config.num_steps else None),
            save_summaries_secs=120,
            sync_optimizer=sync_optimizer,
            saver=saver)
Beispiel #5
0
def train(create_tensor_dict_fn,
          create_model_fn,
          train_config,
          master,
          task,
          num_clones,
          worker_replicas,
          clone_on_cpu,
          ps_tasks,
          worker_job_name,
          is_chief,
          train_dir,
          graph_hook_fn=None):
  """Training function for detection models.

  Args:
    create_tensor_dict_fn: a function to create a tensor input dictionary.
    create_model_fn: a function that creates a DetectionModel and generates
                     losses.
    train_config: a train_pb2.TrainConfig protobuf.
    master: BNS name of the TensorFlow master to use.
    task: The task id of this training instance.
    num_clones: The number of clones to run per machine.
    worker_replicas: The number of work replicas to train with.
    clone_on_cpu: True if clones should be forced to run on CPU.
    ps_tasks: Number of parameter server tasks.
    worker_job_name: Name of the worker job.
    is_chief: Whether this replica is the chief replica.
    train_dir: Directory to write checkpoints and training summaries to.
    graph_hook_fn: Optional function that is called after the training graph is
      completely built. This is helpful to perform additional changes to the
      training graph such as optimizing batchnorm. The function should modify
      the default graph.
  """

  detection_model = create_model_fn()
  data_augmentation_options = [
      preprocessor_builder.build(step)
      for step in train_config.data_augmentation_options]

  with tf.Graph().as_default():
    # Build a configuration specifying multi-GPU and multi-replicas.
    deploy_config = model_deploy.DeploymentConfig(
        num_clones=num_clones,
        clone_on_cpu=clone_on_cpu,
        replica_id=task,
        num_replicas=worker_replicas,
        num_ps_tasks=ps_tasks,
        worker_job_name=worker_job_name)

    # Place the global step on the device storing the variables.
    with tf.device(deploy_config.variables_device()):
      global_step = slim.create_global_step()

    with tf.device(deploy_config.inputs_device()):
      input_queue = create_input_queue(
          train_config.batch_size // num_clones, create_tensor_dict_fn,
          train_config.batch_queue_capacity,
          train_config.num_batch_queue_threads,
          train_config.prefetch_queue_capacity, data_augmentation_options)

    # Gather initial summaries.
    # TODO(rathodv): See if summaries can be added/extracted from global tf
    # collections so that they don't have to be passed around.
    summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
    global_summaries = set([])

    model_fn = functools.partial(_create_losses,
                                 create_model_fn=create_model_fn,
                                 train_config=train_config)
    clones = model_deploy.create_clones(deploy_config, model_fn, [input_queue])
    first_clone_scope = clones[0].scope

    # Gather update_ops from the first clone. These contain, for example,
    # the updates for the batch_norm variables created by model_fn.
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)

    with tf.device(deploy_config.optimizer_device()):
      training_optimizer, optimizer_summary_vars = optimizer_builder.build(
          train_config.optimizer)
      for var in optimizer_summary_vars:
        tf.summary.scalar(var.op.name, var, family='LearningRate')

    sync_optimizer = None
    if train_config.sync_replicas:
      training_optimizer = tf.train.SyncReplicasOptimizer(
          training_optimizer,
          replicas_to_aggregate=train_config.replicas_to_aggregate,
          total_num_replicas=worker_replicas)
      sync_optimizer = training_optimizer

    with tf.device(deploy_config.optimizer_device()):
      regularization_losses = (None if train_config.add_regularization_loss
                               else [])
      total_loss, grads_and_vars = model_deploy.optimize_clones(
          clones, training_optimizer,
          regularization_losses=regularization_losses)
      total_loss = tf.check_numerics(total_loss, 'LossTensor is inf or nan.')

      # Optionally multiply bias gradients by train_config.bias_grad_multiplier.
      if train_config.bias_grad_multiplier:
        biases_regex_list = ['.*/biases']
        grads_and_vars = variables_helper.multiply_gradients_matching_regex(
            grads_and_vars,
            biases_regex_list,
            multiplier=train_config.bias_grad_multiplier)

      # Optionally freeze some layers by setting their gradients to be zero.
      if train_config.freeze_variables:
        grads_and_vars = variables_helper.freeze_gradients_matching_regex(
            grads_and_vars, train_config.freeze_variables)

      # Optionally clip gradients
      if train_config.gradient_clipping_by_norm > 0:
        with tf.name_scope('clip_grads'):
          grads_and_vars = slim.learning.clip_gradient_norms(
              grads_and_vars, train_config.gradient_clipping_by_norm)

      # Create gradient updates.
      grad_updates = training_optimizer.apply_gradients(grads_and_vars,
                                                        global_step=global_step)
      update_ops.append(grad_updates)
      update_op = tf.group(*update_ops, name='update_barrier')
      with tf.control_dependencies([update_op]):
        train_tensor = tf.identity(total_loss, name='train_op')

    if graph_hook_fn:
      with tf.device(deploy_config.variables_device()):
        graph_hook_fn()

    # Add summaries.
    for model_var in slim.get_model_variables():
      global_summaries.add(tf.summary.histogram('ModelVars/' +
                                                model_var.op.name, model_var))
    for loss_tensor in tf.losses.get_losses():
      global_summaries.add(tf.summary.scalar('Losses/' + loss_tensor.op.name,
                                             loss_tensor))
    global_summaries.add(
        tf.summary.scalar('Losses/TotalLoss', tf.losses.get_total_loss()))

    # Add the summaries from the first clone. These contain the summaries
    # created by model_fn and either optimize_clones() or _gather_clone_loss().
    summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES,
                                       first_clone_scope))
    summaries |= global_summaries

    # Merge all summaries together.
    summary_op = tf.summary.merge(list(summaries), name='summary_op')

    # Soft placement allows placing on CPU ops without GPU implementation.
    session_config = tf.ConfigProto(allow_soft_placement=True,
                                    log_device_placement=False)

    # Save checkpoints regularly.
    keep_checkpoint_every_n_hours = train_config.keep_checkpoint_every_n_hours
    saver = tf.train.Saver(
        keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)

    # Create ops required to initialize the model from a given checkpoint.
    init_fn = None
    if train_config.fine_tune_checkpoint:
      if not train_config.fine_tune_checkpoint_type:
        # train_config.from_detection_checkpoint field is deprecated. For
        # backward compatibility, fine_tune_checkpoint_type is set based on
        # from_detection_checkpoint.
        if train_config.from_detection_checkpoint:
          train_config.fine_tune_checkpoint_type = 'detection'
        else:
          train_config.fine_tune_checkpoint_type = 'classification'
      var_map = detection_model.restore_map(
          fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type,
          load_all_detection_checkpoint_vars=(
              train_config.load_all_detection_checkpoint_vars))
      available_var_map = (variables_helper.
                           get_variables_available_in_checkpoint(
                               var_map, train_config.fine_tune_checkpoint))
      init_saver = tf.train.Saver(available_var_map)
      def initializer_fn(sess):
        init_saver.restore(sess, train_config.fine_tune_checkpoint)
      init_fn = initializer_fn

    slim.learning.train(
        train_tensor,
        logdir=train_dir,
        master=master,
        is_chief=is_chief,
        session_config=session_config,
        startup_delay_steps=train_config.startup_delay_steps,
        init_fn=init_fn,
        summary_op=summary_op,
        number_of_steps=(
            train_config.num_steps if train_config.num_steps else None),
        save_summaries_secs=120,
        sync_optimizer=sync_optimizer,
        saver=saver)
def train(create_tensor_dict_fn,
          create_model_fn,
          train_config,
          master,
          task,
          num_clones,
          worker_replicas,
          clone_on_cpu,
          ps_tasks,
          worker_job_name,
          is_chief,
          train_dir,
          train_steps,
          to_keep,
          save_steps,
          graph_hook_fn=None):
    """Training function for detection models.

  Args:
    create_tensor_dict_fn: a function to create a tensor input dictionary.
    create_model_fn: a function that creates a DetectionModel and generates
                     losses.
    train_config: a train_pb2.TrainConfig protobuf.
    master: BNS name of the TensorFlow master to use.
    task: The task id of this training instance.
    num_clones: The number of clones to run per machine.
    worker_replicas: The number of work replicas to train with.
    clone_on_cpu: True if clones should be forced to run on CPU.
    ps_tasks: Number of parameter server tasks.
    worker_job_name: Name of the worker job.
    is_chief: Whether this replica is the chief replica.
    train_dir: Directory to write checkpoints and training summaries to.
    train_steps: Number of training steps
    to_keep: Number of checkpoints to keep
    save_steps: Save after every n seconds
    graph_hook_fn: Optional function that is called after the inference graph is
      built (before optimization). This is helpful to perform additional changes
      to the training graph such as adding FakeQuant ops. The function should
      modify the default graph.

  Raises:
    ValueError: If both num_clones > 1 and train_config.sync_replicas is true.
  """

    detection_model = create_model_fn()
    data_augmentation_options = [
        preprocessor_builder.build(step)
        for step in train_config.data_augmentation_options
    ]

    with tf.Graph().as_default():
        # Build a configuration specifying multi-GPU and multi-replicas.
        deploy_config = model_deploy.DeploymentConfig(
            num_clones=num_clones,
            clone_on_cpu=clone_on_cpu,
            replica_id=task,
            num_replicas=worker_replicas,
            num_ps_tasks=ps_tasks,
            worker_job_name=worker_job_name)

        # Place the global step on the device storing the variables.
        with tf.device(deploy_config.variables_device()):
            global_step = slim.create_global_step()

        if num_clones != 1 and train_config.sync_replicas:
            raise ValueError('In Synchronous SGD mode num_clones must ',
                             'be 1. Found num_clones: {}'.format(num_clones))
        batch_size = train_config.batch_size // num_clones
        if train_config.sync_replicas:
            batch_size //= train_config.replicas_to_aggregate

        with tf.device(deploy_config.inputs_device()):
            input_queue = create_input_queue(
                batch_size, create_tensor_dict_fn,
                train_config.batch_queue_capacity,
                train_config.num_batch_queue_threads,
                train_config.prefetch_queue_capacity,
                data_augmentation_options)

        # Gather initial summaries.
        # TODO(rathodv): See if summaries can be added/extracted from global tf
        # collections so that they don't have to be passed around.
        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
        global_summaries = set([])

        model_fn = functools.partial(_create_losses,
                                     create_model_fn=create_model_fn,
                                     train_config=train_config)
        clones = model_deploy.create_clones(deploy_config, model_fn,
                                            [input_queue])
        first_clone_scope = clones[0].scope

        if graph_hook_fn:
            with tf.device(deploy_config.variables_device()):
                graph_hook_fn()

        # Gather update_ops from the first clone. These contain, for example,
        # the updates for the batch_norm variables created by model_fn.
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,
                                       first_clone_scope)

        with tf.device(deploy_config.optimizer_device()):
            training_optimizer, optimizer_summary_vars = optimizer_builder.build(
                train_config.optimizer)
            for var in optimizer_summary_vars:
                tf.summary.scalar(var.op.name, var, family='LearningRate')

        sync_optimizer = None
        if train_config.sync_replicas:
            training_optimizer = tf.train.SyncReplicasOptimizer(
                training_optimizer,
                replicas_to_aggregate=train_config.replicas_to_aggregate,
                total_num_replicas=worker_replicas)
            sync_optimizer = training_optimizer

        with tf.device(deploy_config.optimizer_device()):
            regularization_losses = (
                None if train_config.add_regularization_loss else [])
            total_loss, grads_and_vars = model_deploy.optimize_clones(
                clones,
                training_optimizer,
                regularization_losses=regularization_losses)
            total_loss = tf.check_numerics(total_loss,
                                           'LossTensor is inf or nan.')

            # Optionally multiply bias gradients by train_config.bias_grad_multiplier.
            if train_config.bias_grad_multiplier:
                biases_regex_list = ['.*/biases']
                grads_and_vars = variables_helper.multiply_gradients_matching_regex(
                    grads_and_vars,
                    biases_regex_list,
                    multiplier=train_config.bias_grad_multiplier)

            # Optionally freeze some layers by setting their gradients to be zero.
            if train_config.freeze_variables:
                grads_and_vars = variables_helper.freeze_gradients_matching_regex(
                    grads_and_vars, train_config.freeze_variables)

            # Optionally clip gradients
            if train_config.gradient_clipping_by_norm > 0:
                with tf.name_scope('clip_grads'):
                    grads_and_vars = slim.learning.clip_gradient_norms(
                        grads_and_vars, train_config.gradient_clipping_by_norm)

            # Create gradient updates.
            grad_updates = training_optimizer.apply_gradients(
                grads_and_vars, global_step=global_step)
            update_ops.append(grad_updates)
            update_op = tf.group(*update_ops, name='update_barrier')
            with tf.control_dependencies([update_op]):
                train_tensor = tf.identity(total_loss, name='train_op')

        # Add summaries.
        for model_var in slim.get_model_variables():
            global_summaries.add(
                tf.summary.histogram('ModelVars/' + model_var.op.name,
                                     model_var))
        for loss_tensor in tf.losses.get_losses():
            global_summaries.add(
                tf.summary.scalar('Losses/' + loss_tensor.op.name,
                                  loss_tensor))
        global_summaries.add(
            tf.summary.scalar('Losses/TotalLoss', tf.losses.get_total_loss()))

        # Add the summaries from the first clone. These contain the summaries
        # created by model_fn and either optimize_clones() or _gather_clone_loss().
        summaries |= set(
            tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope))
        summaries |= global_summaries

        # Merge all summaries together.
        summary_op = tf.summary.merge(list(summaries), name='summary_op')

        # Soft placement allows placing on CPU ops without GPU implementation.
        session_config = tf.ConfigProto(allow_soft_placement=True,
                                        log_device_placement=False)

        # Save checkpoints regularly.
        keep_checkpoint_every_n_hours = train_config.keep_checkpoint_every_n_hours
        saver = tf.train.Saver(
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours,
            max_to_keep=to_keep)

        # Create ops required to initialize the model from a given checkpoint.
        init_fn = None
        if train_config.fine_tune_checkpoint:
            if not train_config.fine_tune_checkpoint_type:
                # train_config.from_detection_checkpoint field is deprecated. For
                # backward compatibility, fine_tune_checkpoint_type is set based on
                # from_detection_checkpoint.
                if train_config.from_detection_checkpoint:
                    train_config.fine_tune_checkpoint_type = 'detection'
                else:
                    train_config.fine_tune_checkpoint_type = 'classification'
            var_map = detection_model.restore_map(
                fine_tune_checkpoint_type=train_config.
                fine_tune_checkpoint_type,
                load_all_detection_checkpoint_vars=(
                    train_config.load_all_detection_checkpoint_vars))
            available_var_map = (
                variables_helper.get_variables_available_in_checkpoint(
                    var_map,
                    train_config.fine_tune_checkpoint,
                    include_global_step=False))
            init_saver = tf.train.Saver(available_var_map)

            def initializer_fn(sess):
                init_saver.restore(sess, train_config.fine_tune_checkpoint)

            init_fn = initializer_fn

        train_config.num_steps = train_steps
        slim.learning.train(
            train_tensor,
            logdir=train_dir,
            master=master,
            is_chief=is_chief,
            session_config=session_config,
            startup_delay_steps=train_config.startup_delay_steps,
            init_fn=init_fn,
            summary_op=summary_op,
            number_of_steps=(train_config.num_steps
                             if train_config.num_steps else None),
            save_summaries_secs=120,
            save_interval_secs=save_steps,
            sync_optimizer=sync_optimizer,
            saver=saver)
Beispiel #7
0
def train(create_model_fn, create_tensor_dict_fn, train_config, train_dir,
          img_root):
    detection_model = create_model_fn()
    data_augmentation_options = [
        preprocessor_builder.build(step)
        for step in train_config.data_augmentation_options
    ]

    with tf.device('cpu:0'):
        global_step = slim.create_global_step()

        input_queue = _create_input_queue(train_config.batch_size,
                                          create_tensor_dict_fn,
                                          detection_model,
                                          train_config.batch_queue_capacity,
                                          train_config.num_batch_queue_threads,
                                          train_config.prefetch_queue_capacity,
                                          data_augmentation_options, img_root)
    with tf.device('gpu:0'):
        _create_losses(input_queue, create_model_fn)
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    training_optimizer = optimizer_builder.build(train_config.optimizer, set())
    # create initial restore op
    init_fn = None
    if train_config.fine_tune_checkpoint:
        var_map = detection_model.restore_map(
            from_detection_checkpoint=train_config.from_detection_checkpoint)
        available_var_map = (
            variables_helper.get_variables_available_in_checkpoint(
                var_map, train_config.fine_tune_checkpoint))
        init_saver = tf.train.Saver(available_var_map)

        def initializer_fn(sess):
            init_saver.restore(sess, train_config.fine_tune_checkpoint)

        init_fn = initializer_fn
    # loss and grads
    total_loss = tf.losses.get_total_loss()
    grads_and_vars = training_optimizer.compute_gradients(
        total_loss, tf.trainable_variables())
    # Optionally multiply bias gradients by train_config.bias_grad_multiplier.
    if train_config.bias_grad_multiplier:
        biases_regex_list = ['.*/biases']
        grads_and_vars = variables_helper.multiply_gradients_matching_regex(
            grads_and_vars,
            biases_regex_list,
            multiplier=train_config.bias_grad_multiplier)

    # Optionally freeze some layers by setting their gradients to be zero.
    if train_config.freeze_variables:
        grads_and_vars = variables_helper.freeze_gradients_matching_regex(
            grads_and_vars, train_config.freeze_variables)

    # Optionally clip gradients
    if train_config.gradient_clipping_by_norm > 0:
        with tf.name_scope('clip_grads'):
            grads_and_vars = slim.learning.clip_gradient_norms(
                grads_and_vars, train_config.gradient_clipping_by_norm)

    # Create gradient updates.
    grad_updates = training_optimizer.apply_gradients(grads_and_vars,
                                                      global_step=global_step)
    update_ops.append(grad_updates)

    update_op = tf.group(*update_ops)
    with tf.control_dependencies([update_op]):
        train_tensor = tf.identity(total_loss, name='train_op')
    # create summary
    summaries = set()
    for loss_tensor in tf.losses.get_losses():
        summaries.add(tf.summary.scalar(loss_tensor.op.name, loss_tensor))
    summaries.add(tf.summary.scalar('TotalLoss', tf.losses.get_total_loss()))
    summary_op = tf.summary.merge(list(summaries), name='summary_op')

    session_config = tf.ConfigProto(allow_soft_placement=True,
                                    log_device_placement=False)
    # session_config.gpu_options.allow_growth = True
    keep_checkpoint_every_n_hours = train_config.keep_checkpoint_every_n_hours
    saver = tf.train.Saver(
        keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)
    slim.learning.train(train_tensor,
                        logdir=train_dir,
                        session_config=session_config,
                        init_fn=init_fn,
                        summary_op=summary_op,
                        number_of_steps=(train_config.num_steps
                                         if train_config.num_steps else None),
                        save_summaries_secs=120,
                        saver=saver)
Beispiel #8
0
def train(datasets_dicts,
          epochs,
          val_every,
          iters_cnt,
          validate_with_eval_model,
          pipeline_config,
          num_clones=1,
          save_cback=None,
          is_transfer_learning=False):
    logger.info('Start train')
    configs = configs_from_pipeline(pipeline_config)

    model_config = configs['model']
    train_config = configs['train_config']

    create_model_fn = functools.partial(model_builder.build,
                                        model_config=model_config,
                                        is_training=True)
    detection_model = create_model_fn()

    def get_next(dataset):
        return dataset_util.make_initializable_iterator(
            build_dataset(dataset)).get_next()

    create_tensor_dict_fn = functools.partial(get_next,
                                              datasets_dicts['train'])
    create_tensor_dict_fn_val = functools.partial(get_next,
                                                  datasets_dicts['val'])

    data_augmentation_options = [
        preprocessor_builder.build(step)
        for step in train_config.data_augmentation_options
    ]

    with tf.Graph().as_default():
        # Build a configuration specifying multi-GPU and multi-replicas.
        deploy_config = model_deploy.DeploymentConfig(
            num_clones=4,
            clone_on_cpu=False,
            replica_id=0,
            num_replicas=1,
            num_ps_tasks=0,
            worker_job_name='lonely_worker')

        # Place the global step on the device storing the variables.
        with tf.device(deploy_config.variables_device()):
            global_step = slim.create_global_step()

        with tf.device(deploy_config.inputs_device()):
            coord = coordinator.Coordinator()
            input_queue = create_input_queue(
                train_config.batch_size, create_tensor_dict_fn,
                train_config.batch_queue_capacity,
                train_config.num_batch_queue_threads,
                train_config.prefetch_queue_capacity,
                data_augmentation_options)

            input_queue_val = create_input_queue(
                train_config.batch_size, create_tensor_dict_fn_val,
                train_config.batch_queue_capacity,
                train_config.num_batch_queue_threads,
                train_config.prefetch_queue_capacity,
                data_augmentation_options)

        # create validation graph
        create_model_fn_val = functools.partial(
            model_builder.build,
            model_config=model_config,
            is_training=not validate_with_eval_model)

        with tf.device(deploy_config.optimizer_device()):
            training_optimizer, optimizer_summary_vars = optimizer_builder.build(
                train_config.optimizer)
            for var in optimizer_summary_vars:
                tf.summary.scalar(var.op.name, var, family='LearningRate')

        train_losses = []
        grads_and_vars = []
        with slim.arg_scope([slim.model_variable, slim.variable],
                            device='/device:CPU:0'):
            for curr_dev_id in range(num_clones):
                with tf.device('/gpu:{}'.format(curr_dev_id)):
                    with tf.name_scope(
                            'clone_{}'.format(curr_dev_id)) as scope:
                        with tf.variable_scope(
                                tf.get_variable_scope(),
                                reuse=True if curr_dev_id > 0 else None):
                            losses = _create_losses_val(
                                input_queue, create_model_fn, train_config)
                            clones_loss = tf.add_n(losses)
                            clones_loss = tf.divide(clones_loss,
                                                    1.0 * num_clones)
                            grads = training_optimizer.compute_gradients(
                                clones_loss)
                            train_losses.append(clones_loss)
                            grads_and_vars.append(grads)
                            if curr_dev_id == 0:
                                update_ops = tf.get_collection(
                                    tf.GraphKeys.UPDATE_OPS)

        val_total_loss = get_val_loss(num_clones, input_queue_val,
                                      create_model_fn_val, train_config)

        with tf.device(deploy_config.optimizer_device()):
            total_loss = tf.add_n(train_losses)
            grads_and_vars = model_deploy._sum_clones_gradients(grads_and_vars)
            total_loss = tf.check_numerics(total_loss,
                                           'LossTensor is inf or nan.')

            # Optionally multiply bias gradients by train_config.bias_grad_multiplier.
            if train_config.bias_grad_multiplier:
                biases_regex_list = ['.*/biases']
                grads_and_vars = variables_helper.multiply_gradients_matching_regex(
                    grads_and_vars,
                    biases_regex_list,
                    multiplier=train_config.bias_grad_multiplier)

            # Optionally freeze some layers by setting their gradients to be zero.
            if train_config.freeze_variables:
                grads_and_vars = variables_helper.freeze_gradients_matching_regex(
                    grads_and_vars, train_config.freeze_variables)

            # Optionally clip gradients
            if train_config.gradient_clipping_by_norm > 0:
                with tf.name_scope('clip_grads'):
                    grads_and_vars = slim.learning.clip_gradient_norms(
                        grads_and_vars, train_config.gradient_clipping_by_norm)

            # Create gradient updates.
            grad_updates = training_optimizer.apply_gradients(
                grads_and_vars, global_step=global_step)
            update_ops.append(grad_updates)
            update_op = tf.group(*update_ops, name='update_barrier')
            with tf.control_dependencies([update_op]):
                train_tensor = tf.identity(total_loss, name='train_op')

        config = tf.ConfigProto(allow_soft_placement=True,
                                log_device_placement=False)
        coord.clear_stop()
        sess = tf.Session(config=config)
        saver = tf.train.Saver()

        graph = ops.get_default_graph()
        with graph.as_default():
            with ops.name_scope('init_ops'):
                init_op = variables.global_variables_initializer()
                ready_op = variables.report_uninitialized_variables()
                local_init_op = control_flow_ops.group(
                    variables.local_variables_initializer(),
                    lookup_ops.tables_initializer())

        # graph.finalize()
        sess.run([init_op, ready_op, local_init_op])

        queue_runners = graph.get_collection(ops.GraphKeys.QUEUE_RUNNERS)
        threads = []
        for qr in queue_runners:
            threads.extend(
                qr.create_threads(sess, coord=coord, daemon=True, start=True))

        logger.info('Start restore')
        if train_config.fine_tune_checkpoint:
            var_map = detection_model.restore_map(
                fine_tune_checkpoint_type=train_config.
                fine_tune_checkpoint_type,
                load_all_detection_checkpoint_vars=(
                    train_config.load_all_detection_checkpoint_vars
                    and (not is_transfer_learning)))
            available_var_map = (
                variables_helper.get_variables_available_in_checkpoint(
                    var_map, train_config.fine_tune_checkpoint))
            if 'global_step' in available_var_map:
                del available_var_map['global_step']
            init_saver = tf.train.Saver(available_var_map)
            logger.info('Restoring model weights from previous checkpoint.')
            init_saver.restore(sess, train_config.fine_tune_checkpoint)
            logger.info('Model restored.')

        eval_planner = EvalPlanner(epochs, val_every)
        progress = sly.Progress('Model training: ',
                                epochs * iters_cnt['train'])
        best_val_loss = float('inf')
        epoch_flt = 0

        for epoch in range(epochs):
            logger.info("Before new epoch", extra={'epoch': epoch_flt})
            for train_it in range(iters_cnt['train']):
                total_loss, np_global_step = sess.run(
                    [train_tensor, global_step])

                metrics_values_train = {
                    'loss': total_loss,
                }

                progress.iter_done_report()
                epoch_flt = epoch_float(epoch, train_it + 1,
                                        iters_cnt['train'])
                sly.report_metrics_training(epoch_flt, metrics_values_train)

                if eval_planner.need_validation(epoch_flt):
                    logger.info("Before validation",
                                extra={'epoch': epoch_flt})

                    overall_val_loss = 0
                    for val_it in range(iters_cnt['val']):
                        overall_val_loss += sess.run(val_total_loss)

                        logger.info("Validation in progress",
                                    extra={
                                        'epoch': epoch_flt,
                                        'val_iter': val_it,
                                        'val_iters': iters_cnt['val']
                                    })

                    metrics_values_val = {
                        'loss': overall_val_loss / iters_cnt['val'],
                    }
                    sly.report_metrics_validation(epoch_flt,
                                                  metrics_values_val)
                    logger.info("Validation has been finished",
                                extra={'epoch': epoch_flt})

                    eval_planner.validation_performed()

                    val_loss = metrics_values_val['loss']
                    model_is_best = val_loss < best_val_loss
                    if model_is_best:
                        best_val_loss = val_loss
                        logger.info(
                            'It\'s been determined that current model is the best one for a while.'
                        )

                    save_cback(saver,
                               sess,
                               model_is_best,
                               opt_data={
                                   'epoch': epoch_flt,
                                   'val_metrics': metrics_values_val,
                               })

            logger.info("Epoch was finished", extra={'epoch': epoch_flt})
        coord.request_stop()
        coord.join(threads)
Beispiel #9
0
def train(create_tensor_dict_fn, create_model_fn, train_config, master, task,
          num_clones, worker_replicas, clone_on_cpu, ps_tasks, worker_job_name,
          is_chief, train_dir):
    """Training function for detection models.

  Args:
    create_tensor_dict_fn: a function to create a tensor input dictionary.
    create_model_fn: a function that creates a DetectionModel and generates
                     losses.
    train_config: a train_pb2.TrainConfig protobuf.
    master: BNS name of the TensorFlow master to use.
    task: The task id of this training instance.
    num_clones: The number of clones to run per machine.
    worker_replicas: The number of work replicas to train with.
    clone_on_cpu: True if clones should be forced to run on CPU.
    ps_tasks: Number of parameter server tasks.
    worker_job_name: Name of the worker job.
    is_chief: Whether this replica is the chief replica.
    train_dir: Directory to write checkpoints and training summaries to.
  """

    detection_model = create_model_fn()  #Object for create the detection model
    data_augmentation_options = [  #for ssd it's ssd random crop 
        preprocessor_builder.build(
            step)  #random_horizontal_flip in the faster rcnn config file 
        for step in train_config.data_augmentation_options
    ]

    with tf.Graph().as_default(
    ):  #we need a default graph in order to create the model
        # Build a configuration specifying multi-GPU and multi-replicas.
        deploy_config = model_deploy.DeploymentConfig(
            num_clones=num_clones,
            clone_on_cpu=clone_on_cpu,
            replica_id=task,
            num_replicas=worker_replicas,
            num_ps_tasks=ps_tasks,
            worker_job_name=worker_job_name)

        # Place the global step on the device storing the variables.    #global step is needed to keep the records
        with tf.device(deploy_config.variables_device()
                       ):  #suitable device for operation  +++On CPU I think
            global_step = slim.create_global_step(
            )  #created the global step tensor


#The following will create an input Que images ,boxes m targets
        with tf.device(deploy_config.inputs_device()
                       ):  #Device to use to build the inputs ++++on CPU ??
            input_queue = _create_input_queue(
                train_config.batch_size //
                num_clones,  #here batch size/number_clones 
                create_tensor_dict_fn,
                train_config.batch_queue_capacity,
                train_config.num_batch_queue_threads,
                train_config.prefetch_queue_capacity,
                data_augmentation_options)  #random_horizontal_flip

        # Gather initial summaries.
        summaries = set(tf.get_collection(
            tf.GraphKeys.SUMMARIES))  #vreate the summeries
        global_summaries = set([])
        #Creating the loss
        model_fn = functools.partial(
            _create_losses,  #This will create the losses , It need a object of our model as an argivement 
            create_model_fn=create_model_fn)
        clones = model_deploy.create_clones(
            deploy_config, model_fn,
            [input_queue
             ])  #creating the clones with respect to t he input model fn
        first_clone_scope = clones[0].scope

        # Gather update_ops from the first clone. These contain, for example,
        # the updates for the batch_norm variables created by model_fn.
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,
                                       first_clone_scope)

        with tf.device(deploy_config.optimizer_device()):  #This is important
            training_optimizer = optimizer_builder.build(
                train_config.optimizer,  #optimization 
                global_summaries
            )  #will select rms_prop , Adam Here derectly we get the optimizer

        sync_optimizer = None
        if train_config.sync_replicas:
            training_optimizer = tf.SyncReplicasOptimizer(  #This is more of synchronising the optimizer because there are repicas doing optimizing
                training_optimizer,
                replicas_to_aggregate=train_config.replicas_to_aggregate,
                total_num_replicas=train_config.worker_replicas)
            sync_optimizer = training_optimizer

        # Create ops required to initialize the model from a given checkpoint.
        init_fn = None
        if train_config.fine_tune_checkpoint:  #This is the checkpoint path file
            init_fn = detection_model.restore_fn(  #Re storing the weights from the feature extractors 
                train_config.fine_tune_checkpoint,
                from_detection_checkpoint=train_config.
                from_detection_checkpoint
            )  #This is more of the initializer which is re-stored from check points

        with tf.device(deploy_config.optimizer_device()):
            total_loss, grads_and_vars = model_deploy.optimize_clones(  #This gives the total loss and also the grad and var pairs (Tuple) 
                clones,
                training_optimizer,
                regularization_losses=None)
            total_loss = tf.check_numerics(total_loss,
                                           'LossTensor is inf or nan.')

            # Optionally multiply bias gradients by train_config.bias_grad_multiplier.
            if train_config.bias_grad_multiplier:  #We have not initialized a bias gradient multiplier
                biases_regex_list = ['.*/biases']
                grads_and_vars = variables_helper.multiply_gradients_matching_regex(
                    grads_and_vars,
                    biases_regex_list,
                    multiplier=train_config.bias_grad_multiplier)

            # Optionally freeze some layers by setting their gradients to be zero.
            if train_config.freeze_variables:  #Here we are not freezing any may be it's good to freeze the
                #This will be usefult to go through the variables
                print("Priting the grad_and_vars to check the tuples ")
                print(grad_and_vars)
                grads_and_vars = variables_helper.freeze_gradients_matching_regex(  #input to this also grads and vars which means 
                    grads_and_vars,
                    train_config.freeze_variables)  #This function will output
                #We are getiing gradients and of their varaibles exept the froxen list
            # Optionally clip gradients
            if train_config.gradient_clipping_by_norm > 0:
                with tf.name_scope('clip_grads'):
                    grads_and_vars = slim.learning.clip_gradient_norms(
                        grads_and_vars, train_config.gradient_clipping_by_norm)

            # Create gradient updates.
            grad_updates = training_optimizer.apply_gradients(
                grads_and_vars,  #updating the gradinets list 
                global_step=global_step)
            update_ops.append(grad_updates)  #Here the new updated variables

            update_op = tf.group(*update_ops)
            with tf.control_dependencies([update_op]):
                train_tensor = tf.identity(total_loss, name='train_op')

        # Add summaries.
        for model_var in slim.get_model_variables():
            global_summaries.add(
                tf.summary.histogram(model_var.op.name, model_var))
        for loss_tensor in tf.losses.get_losses():
            global_summaries.add(
                tf.summary.scalar(loss_tensor.op.name, loss_tensor))
        global_summaries.add(
            tf.summary.scalar('TotalLoss', tf.losses.get_total_loss()))

        # Add the summaries from the first clone. These contain the summaries
        # created by model_fn and either optimize_clones() or _gather_clone_loss().
        summaries |= set(
            tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope))
        summaries |= global_summaries

        # Merge all summaries together.
        summary_op = tf.summary.merge(list(summaries), name='summary_op')

        # Soft placement allows placing on CPU ops without GPU implementation.
        session_config = tf.ConfigProto(allow_soft_placement=True,
                                        log_device_placement=False)

        # Save checkpoints regularly.
        keep_checkpoint_every_n_hours = train_config.keep_checkpoint_every_n_hours
        saver = tf.train.Saver(  #saving the checkpoints 
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)

        slim.learning.train(  #Training the network using a compact function 
            train_tensor,
            logdir=train_dir,
            master=master,
            is_chief=is_chief,
            session_config=session_config,
            startup_delay_steps=train_config.startup_delay_steps,
            init_fn=init_fn,
            summary_op=summary_op,
            number_of_steps=(train_config.num_steps
                             if train_config.num_steps else None),
            save_summaries_secs=120,
            sync_optimizer=sync_optimizer,
            saver=saver)