Beispiel #1
0
                            data_path=data_path)
    # ground-truth policy value of a evaluation policy
    # , which is estimated with factual (observed) rewards (on-policy estimation)
    ground_truth_policy_value = OpenBanditDataset.calc_on_policy_policy_value_estimate(
        behavior_policy=evaluation_policy,
        campaign=campaign,
        data_path=data_path,
        test_size=test_size,
        is_timeseries_split=is_timeseries_split,
    )
    # compute action distribution by evaluation policy
    if evaluation_policy == "bts":
        policy = BernoulliTS(
            n_actions=obd.n_actions,
            len_list=obd.len_list,
            is_zozotown_prior=
            True,  # replicate the policy in the ZOZOTOWN production
            campaign=campaign,
            random_state=random_state,
        )
    else:
        policy = Random(
            n_actions=obd.n_actions,
            len_list=obd.len_list,
            random_state=random_state,
        )
    action_dist_single_round = policy.compute_batch_action_dist(
        n_sim=n_sim_to_compute_action_dist)

    def process(b: int):
        # load the pre-trained regression model
        with open(reg_model_path / f"reg_model_{b}.pkl", "rb") as f:
Beispiel #2
0
    print(args)

    # configurations
    n_runs = args.n_runs
    n_rounds = args.n_rounds
    n_actions = args.n_actions
    dim_context = args.dim_context
    n_sim = args.n_sim
    evaluation_policy_name = args.evaluation_policy_name
    n_jobs = args.n_jobs
    random_state = args.random_state
    np.random.seed(random_state)

    # define evaluation policy
    evaluation_policy_dict = dict(
        bernoulli_ts=BernoulliTS(n_actions=n_actions,
                                 random_state=random_state),
        epsilon_greedy=EpsilonGreedy(n_actions=n_actions,
                                     epsilon=0.1,
                                     random_state=random_state),
        lin_epsilon_greedy=LinEpsilonGreedy(dim=dim_context,
                                            n_actions=n_actions,
                                            epsilon=0.1,
                                            random_state=random_state),
        lin_ts=LinTS(dim=dim_context,
                     n_actions=n_actions,
                     random_state=random_state),
        lin_ucb=LinUCB(dim=dim_context,
                       n_actions=n_actions,
                       random_state=random_state),
        logistic_epsilon_greedy=LogisticEpsilonGreedy(
            dim=dim_context,
     reg_model = pickle.load(f)
 with open(reg_model_path / f"is_for_reg_model_{b}.pkl", "rb") as f:
     is_for_reg_model = pickle.load(f)
 # sample bootstrap samples from batch logged bandit feedback
 boot_bandit_feedback = obd.sample_bootstrap_bandit_feedback(
     test_size=test_size,
     is_timeseries_split=is_timeseries_split,
     random_state=b)
 for key_ in ["context", "action", "reward", "pscore", "position"]:
     boot_bandit_feedback[key_] = boot_bandit_feedback[key_][
         ~is_for_reg_model]
 if evaluation_policy == "bts":
     policy = BernoulliTS(
         n_actions=obd.n_actions,
         len_list=obd.len_list,
         is_zozotown_prior=
         True,  # replicate the policy in the ZOZOTOWN production
         campaign=campaign,
         random_state=random_state,
     )
     action_dist = policy.compute_batch_action_dist(
         n_sim=100000, n_rounds=boot_bandit_feedback["n_rounds"])
 else:
     policy = Random(
         n_actions=obd.n_actions,
         len_list=obd.len_list,
         random_state=random_state,
     )
     action_dist = policy.compute_batch_action_dist(
         n_sim=100000, n_rounds=boot_bandit_feedback["n_rounds"])
 # estimate the mean reward function using the pre-trained reg_model
 estimated_rewards_by_reg_model = reg_model.predict(
Beispiel #4
0
def main(cfg: DictConfig) -> None:
    print(cfg)
    logger.info(f"The current working directory is {Path().cwd()}")
    start_time = time.time()
    logger.info("initializing experimental condition..")

    # compared ope estimators
    lambdas = list(dict(cfg.estimator_hyperparams)["lambdas"])
    ope_estimators = [
        DoublyRobustWithShrinkage(lambda_=lam_,
                                  estimator_name=f"DRos ({lam_})")
        for lam_ in lambdas
    ] + [
        DoublyRobustWithShrinkageTuning(lambdas=lambdas,
                                        estimator_name="DRos (tuning)"),
    ]

    # configurations
    n_seeds = cfg.setting.n_seeds
    sample_size = cfg.setting.sample_size
    reg_model = cfg.setting.reg_model
    campaign = cfg.setting.campaign
    behavior_policy = cfg.setting.behavior_policy
    test_size = cfg.setting.test_size
    is_timeseries_split = cfg.setting.is_timeseries_split
    n_folds = cfg.setting.n_folds
    obd_path = (Path().cwd().parents[5] /
                "open_bandit_dataset" if cfg.setting.is_full_obd else None)
    random_state = cfg.setting.random_state
    np.random.seed(random_state)

    # define dataset
    dataset_ts = OpenBanditDataset(behavior_policy="bts",
                                   campaign=campaign,
                                   data_path=obd_path)
    dataset_ur = OpenBanditDataset(behavior_policy="random",
                                   campaign=campaign,
                                   data_path=obd_path)

    # prepare logged bandit feedback and evaluation policies
    if behavior_policy == "random":
        if is_timeseries_split:
            bandit_feedback_ur = dataset_ur.obtain_batch_bandit_feedback(
                test_size=test_size,
                is_timeseries_split=True,
            )[0]
        else:
            bandit_feedback_ur = dataset_ur.obtain_batch_bandit_feedback()
        bandit_feedbacks = [bandit_feedback_ur]
        # obtain the ground-truth policy value
        ground_truth_ts = OpenBanditDataset.calc_on_policy_policy_value_estimate(
            behavior_policy="bts",
            campaign=campaign,
            data_path=obd_path,
            test_size=test_size,
            is_timeseries_split=is_timeseries_split,
        )
        # obtain action choice probabilities and define evaluation policies
        policy_ts = BernoulliTS(
            n_actions=dataset_ts.n_actions,
            len_list=dataset_ts.len_list,
            random_state=random_state,
            is_zozotown_prior=True,
            campaign=campaign,
        )
        action_dist_ts = policy_ts.compute_batch_action_dist(n_rounds=1000000)
        evaluation_policies = [(ground_truth_ts, action_dist_ts)]
    else:
        if is_timeseries_split:
            bandit_feedback_ts = dataset_ts.obtain_batch_bandit_feedback(
                test_size=test_size,
                is_timeseries_split=True,
            )[0]
        else:
            bandit_feedback_ts = dataset_ts.obtain_batch_bandit_feedback()
        bandit_feedbacks = [bandit_feedback_ts]
        # obtain the ground-truth policy value
        ground_truth_ur = OpenBanditDataset.calc_on_policy_policy_value_estimate(
            behavior_policy="random",
            campaign=campaign,
            data_path=obd_path,
            test_size=test_size,
            is_timeseries_split=is_timeseries_split,
        )
        # obtain action choice probabilities and define evaluation policies
        policy_ur = Random(
            n_actions=dataset_ur.n_actions,
            len_list=dataset_ur.len_list,
            random_state=random_state,
        )
        action_dist_ur = policy_ur.compute_batch_action_dist(n_rounds=1000000)
        evaluation_policies = [(ground_truth_ur, action_dist_ur)]

    # regression models used in ope estimators
    hyperparams = dict(cfg.reg_model_hyperparams)[reg_model]
    regression_models = [reg_model_dict[reg_model](**hyperparams)]

    # define an evaluator class
    evaluator = InterpretableOPEEvaluator(
        random_states=np.arange(n_seeds),
        bandit_feedbacks=bandit_feedbacks,
        evaluation_policies=evaluation_policies,
        ope_estimators=ope_estimators,
        regression_models=regression_models,
    )

    # conduct an evaluation of OPE experiment
    logger.info("experiment started")
    _ = evaluator.estimate_policy_value(sample_size=sample_size,
                                        n_folds_=n_folds)
    # calculate statistics
    mean = evaluator.calculate_mean(root=True)
    mean_scaled = evaluator.calculate_mean(scale=True, root=True)

    # save results of the evaluation of off-policy estimators
    log_path = Path("./outputs/hypara")
    log_path.mkdir(exist_ok=True, parents=True)
    # save root mse
    root_mse_df = DataFrame()
    root_mse_df["estimator"] = list(mean.keys())
    root_mse_df["mean"] = list(mean.values())
    root_mse_df["mean(scaled)"] = list(mean_scaled.values())
    root_mse_df.to_csv(log_path / "root_mse.csv")
    # conduct pairwise t-tests
    se_df = DataFrame(evaluator.calculate_squared_error())
    se_df = DataFrame(se_df.stack()).reset_index(1)
    se_df.rename(columns={"level_1": "estimators", 0: "se"}, inplace=True)
    nonparam_ttests = (pg.pairwise_ttests(
        data=se_df,
        dv="se",
        parametric=False,
        between="estimators",
    ).round(4).drop(["Contrast", "Parametric", "Paired"], axis=1))
    nonparam_ttests.to_csv(log_path / "nonparam_ttests.csv")
    # print result
    print(root_mse_df)
    experiment = f"{campaign}-{behavior_policy}-{sample_size}"
    elapsed_time = np.round((time.time() - start_time) / 60, 2)
    logger.info(f"finish experiment {experiment} in {elapsed_time}min")