Beispiel #1
0
def plot_v1_0():

    if request.method == 'GET':
        args = request.args
    else:
        args = request.form
    query = json.loads(args.get('query'))

    with open_dataset(get_dataset_url(query.get('dataset'))) as dataset:
        if 'time' in query:
            query['time'] = dataset.convert_to_timestamp(query.get('time'))
        else:
            query['starttime'] = dataset.convert_to_timestamp(
                query.get('starttime'))
            query['endtime'] = dataset.convert_to_timestamp(
                query.get('endtime'))

        resp = routes.routes_impl.plot_impl(args, query)

        m = hashlib.md5()
        m.update(str(resp).encode())
        if 'data' in request.args:
            plotData = {
                'data': str(resp),
                'shape': resp.shape,
                'mask': str(resp.mask)
            }
            plotData = json.dumps(plotData)
            return Response(plotData, status=200, mimetype='application/json')
        return resp
Beispiel #2
0
def range_query_v1_0(dataset, variable, interp, radius, neighbours, projection,
                     extent, depth, time):
    with open_dataset(get_dataset_url(dataset)) as ds:
        date = ds.convert_to_timestamp(time)
        return routes.routes_impl.range_query_impl(interp, radius, neighbours,
                                                   dataset, projection, extent,
                                                   variable, depth, date)
Beispiel #3
0
    def load_data(self):
        with open_dataset(get_dataset_url(self.dataset_name)) as d:
            if self.time < 0:
                self.time += len(d.timestamps)
            time = np.clip(self.time, 0, len(d.timestamps) - 1)
            timestamp = d.timestamps[time]

            try:
                self.load_misc(d, self.variables)
            except IndexError as e:
                raise ClientError(
                    gettext(
                        "The selected variable(s) were not found in the dataset. \
                Most likely, this variable is a derived product from existing dataset variables. \
                Please select another variable. ") + str(e))

            point_data, point_depths = self.get_data(d, self.variables, time)
            point_data = self.apply_scale_factors(point_data)

            self.variable_units, point_data = self.kelvin_to_celsius(
                self.variable_units, point_data)

        self.data = self.subtract_other(point_data)
        self.depths = point_depths
        self.timestamp = timestamp
Beispiel #4
0
def tile_v1_0(projection, interp, radius, neighbours, dataset, variable, time,
              depth, scale, zoom, x, y):
    with open_dataset(get_dataset_url(dataset)) as ds:
        date = ds.convert_to_timestamp(time)
        return routes.routes_impl.tile_impl(projection, interp, radius,
                                            neighbours, dataset, variable,
                                            date, depth, scale, zoom, x, y)
Beispiel #5
0
    def load_data(self):
        if not isinstance(self.depth, list):
            self.depth = [self.depth]

        self.depth = sorted(self.depth)

        with open_dataset(get_dataset_url(self.dataset_name)) as dataset:
            if self.starttime < 0:
                self.starttime += len(dataset.timestamps)
            if self.endtime < 0:
                self.endtime += len(dataset.timestamps)
            start = np.clip(self.starttime, 0, len(dataset.timestamps) - 1)
            end = np.clip(self.endtime, 0, len(dataset.timestamps) - 1)

            timestamp = dataset.timestamps[start:end + 1]

            self.load_misc(dataset, self.variables)

            point_data = []
            point_depth = []
            for p in self.points:
                data = []
                depth = []
                for v in self.variables:
                    dd = []
                    jj = []
                    for d in self.depth:
                        da, dp = dataset.get_timeseries_point(
                            float(p[0]),
                            float(p[1]),
                            d,
                            start,
                            end,
                            v,
                            return_depth=True)
                        dd.append(da)
                        jj.append(dp)
                    data.append(np.ma.array(dd))
                    depth.append(np.ma.array(jj))
                point_data.append(np.ma.array(data))
                point_depth.append(np.ma.array(depth))

            point_data = np.ma.array(point_data)
            point_depth = np.ma.array(point_depth)

            for idx, factor in enumerate(self.scale_factors):
                if factor != 1.0:
                    point_data[idx] = np.multiply(point_data[idx], factor)

            self.variable_units, point_data = self.kelvin_to_celsius(
                self.variable_units, point_data)

        self.data = self.subtract_other(point_data)
        self.data_depth = point_depth
        self.timestamp = timestamp
    def load_data(self):
        with open_dataset(get_dataset_url(self.dataset_name)) as dataset:
            if self.time < 0:
                self.time += len(dataset.timestamps)
            time = np.clip(self.time, 0, len(dataset.timestamps) - 1)

            self.timestamp = dataset.timestamps[time]

            self.load_temp_sal(dataset, time)

            self.variable_units[0], self.temperature = \
                super(plPoint.PointPlotter, self).kelvin_to_celsius(
                    self.variable_units[0], self.temperature
            )
Beispiel #7
0
def stats_v1_0():

    if request.method == 'GET':
        args = request.args
    else:
        args = request.form
    query = json.loads(args.get('query'))

    with open_dataset(get_dataset_url(query.get('dataset'))) as dataset:
        date = dataset.convert_to_timestamp(query.get('time'))
        date = {'time': date}
        query.update(date)

        return routes.routes_impl.stats_impl(args, query)
    def subtract_other(self, data):
        if self.compare:
            with Dataset(
                get_dataset_url(self.compare['dataset']), 'r'
            ) as dataset:
                cli = self.get_data(
                    dataset, self.compare['variables'], self.compare['time']
                )

            for idx, v in enumerate(self.variables):
                data[:, idx, :] = \
                    data[:, idx, :] - cli[:, idx, :]

        return data
def timestamp_for_date_impl(old_dataset, date, new_dataset):
    """
    API Format: /api/timestamp/<string:old_dataset>/<int:date>/<string:new_dataset>

    <string:old_dataset> : Previous dataset used
    <int:date>           : Date of desired data - Can be found using /api/timestamps/?datasets='...'
    <string:new_dataset> : Dataset to extract data - Can be found using /api/datasets

    **Used when Changing datasets**
    """

    with open_dataset(get_dataset_url(old_dataset)) as ds:
        timestamp = ds.timestamps[date]

    with open_dataset(get_dataset_url(new_dataset)) as ds:
        timestamps = ds.timestamps

    diffs = np.vectorize(lambda x: x.total_seconds())(timestamps - timestamp)
    idx = np.where(diffs <= 0)[0]
    res = 0
    if len(idx) > 0:
        res = idx.max().item()  # https://stackoverflow.com/a/11389998/2231969

    return Response(json.dumps(res), status=200, mimetype='application/json')
def get_scale(dataset, variable, depth, time, projection, extent, interp,
              radius, neighbours):
    x = np.linspace(extent[0], extent[2], 50)
    y = np.linspace(extent[1], extent[3], 50)
    xx, yy = np.meshgrid(x, y)
    dest = Proj(init=projection)
    lon, lat = dest(xx, yy, inverse=True)

    variables_anom = variable.split(",")
    variables = [re.sub('_anom$', '', v) for v in variables_anom]

    with open_dataset(get_dataset_url(dataset)) as ds:
        timestamp = ds.timestamps[time]

        d = ds.get_area(np.array([lat, lon]), depth, time, variables[0],
                        interp, radius, neighbours)

        if len(variables) > 1:
            d0 = d
            d1 = ds.get_area(np.array([lat, lon]), depth, time, variables[1],
                             interp, radius, neighbours)
            d = np.sqrt(d0**2 + d1**2)

        variable_unit = get_variable_unit(dataset, ds.variables[variables[0]])
        if variable_unit.startswith("Kelvin"):
            variable_unit = "Celsius"
            d = np.add(d, -273.15)

    if variables != variables_anom:
        with open_dataset(get_dataset_climatology(dataset), 'r') as ds:
            c = ds.get_area(np.array([lat, lon]), depth, timestamp.month - 1,
                            variables[0], interp, radius, neighbours)

            if len(variables) > 1:
                c0 = c
                c1 = ds.get_area(np.array([lat,
                                           lon]), depth, timestamp.month - 1,
                                 variables[1], interp, radius, neighbours)
                c = np.sqrt(c0**2 + c1**2)

            d = d - c

            m = max(abs(d.nanmin()), abs(d.nanmax()))
            return -m, m

    # Return min and max values of selected variable, while ignoring
    # nan values
    return np.nanmin(d), np.nanmax(d)
def subset_query_impl(args):
    """
    API Format: /subset/?query='...'
    
    **Query must be written in JSON and converted to encodedURI**
    **Not all components of query are required
    """

    working_dir = None
    subset_filename = None
    with open_dataset(get_dataset_url(args.get('dataset_name'))) as dataset:
        working_dir, subset_filename = dataset.subset(args)

    return send_from_directory(working_dir,
                               subset_filename,
                               as_attachment=True)
Beispiel #12
0
def time_query_conversion(dataset, index):
    """
    API Format: /api/timestamps/?dataset=' '

    dataset : Dataset to extract data - Can be found using /api/datasets

    Finds all data timestamps available for a specific dataset
    """

    with open_dataset(get_dataset_url(dataset)) as ds:

        try:
            date = ds.timestamps[index]
            return date.replace(tzinfo=pytz.UTC).isoformat()
        except IndexError:
            return ClientError("Timestamp does not exist")
def depth_impl(args):
    """
    API Format: /api/depth/?dataset=''&variable=' '

    dataset  : Dataset to extract data - Can be found using /api/datasets
    variable : Type of data to retrieve - found using /api/variables/?dataset='...'

    Returns all depths available for that variable in the dataset
    """

    #Checking for valid Query
    if 'variable' not in args or ('dataset' not in args):
        if 'dataset' in args:
            raise APIError("Please Specify a variable using &variable='...' ")
        if 'variable' in args:
            raise APIError("Please Specify a Dataset using &dataset='...' ")
        raise APIError(
            "Please Specify a Dataset and Variable using ?dataset='...'&variable='...' "
        )
    #~~~~~~~~~~~~~~~~~~~~~~~~

    var = args.get('variable')
    variables = var.split(',')
    variables = [re.sub('_anom$', '', v) for v in variables]

    data = []

    dataset = args['dataset']

    with open_dataset(get_dataset_url(dataset)) as ds:
        for variable in variables:
            if variable and \
                variable in ds.variables and \
                    set(ds.depth_dimensions) & \
               set(ds.variables[variable].dimensions):
                if str(args.get('all')).lower() in ['true', 'yes', 'on']:
                    data.append({'id': 'all', 'value': gettext('All Depths')})

                for idx, value in enumerate(np.round(ds.depths)):
                    data.append({'id': idx, 'value': "%d m" % (value)})

            if len(data) > 0:
                data.insert(0, {'id': 'bottom', 'value': gettext('Bottom')})
    data = [e for i, e in enumerate(data) if data.index(e) == i]

    resp = jsonify(data)
    return resp
Beispiel #14
0
def timestamp_outOfBounds(dataset, time):
    """
    API Format: /api/timestamps/?dataset=' '

    dataset : Dataset to extract data - Can be found using /api/datasets

    Finds all data timestamps available for a specific dataset
    """

    with open_dataset(get_dataset_url(dataset)) as ds:
        length = len(ds.timestamps)

    if time < length:
        return False  #Valid timestamp
    else:
        print("Timestamp out of bounds")
        return True
Beispiel #15
0
def get_point_data(dataset, variable, time, depth, location):
    variables_anom = variable.split(",")
    variables = [re.sub('_anom$', '', v) for v in variables_anom]

    data = []
    names = []
    units = []
    with open_dataset(get_dataset_url(dataset)) as ds:
        timestamp = ds.timestamps[time]
        for v in variables:
            d = ds.get_point(location[0], location[1], depth, time, v)
            variable_name = get_variable_name(dataset, ds.variables[v])
            variable_unit = get_variable_unit(dataset, ds.variables[v])

            if variable_unit.startswith("Kelvin"):
                variable_unit = "Celsius"
                d = np.add(d, -273.15)

            data.append(d)
            names.append(variable_name)
            units.append(variable_unit)

    if variables != variables_anom:
        with open_dataset(get_dataset_climatology(dataset)) as ds:
            for idx, v in enumerate(variables):
                d = ds.get_point(location[0], location[1], depth,
                                 timestamp.month, v)

                data[idx] = data[idx] - d
                names[idx] = names[idx] + " Anomaly"

    result = {
        'value': ['%s' % float('%.4g' % f) for f in data],
        'location': [round(f, 4) for f in location],
        'name': names,
        'units': units,
    }
    return result
def time_query_impl(args):
    """
    API Format: /api/timestamps/?dataset=' '

    dataset : Dataset to extract data - Can be found using /api/datasets

    Finds all data timestamps available for a specific dataset
    """

    if 'dataset' not in args:
        raise APIError("Please Specify a Dataset Using ?dataset='...' ")
    #~~~~~~~~~~~~~~~~~~~~~~~

    data = []
    dataset = args['dataset']
    quantum = args.get('quantum')

    with open_dataset(get_dataset_url(dataset)) as ds:
        for idx, date in enumerate(ds.timestamps):
            if quantum == 'month':
                date = datetime.datetime(date.year, date.month, 15)
            data.append({'id': idx, 'value': date.replace(tzinfo=pytz.UTC)})

    data = sorted(data, key=lambda k: k['id'])

    class DateTimeEncoder(json.JSONEncoder):
        def default(self, o):
            if isinstance(o, datetime.datetime):
                return o.isoformat()

            return json.JSONEncoder.default(self, o)

    js = json.dumps(data, cls=DateTimeEncoder)

    resp = Response(js, status=200, mimetype='application/json')
    return resp
Beispiel #17
0
def scale(args):
    dataset_name = args.get('dataset')
    scale = args.get('scale')
    scale = [float(component) for component in scale.split(',')]

    variable = args.get('variable')
    anom = False
    if variable.endswith('_anom'):
        variable = variable[0:-5]
        anom = True

    variable = variable.split(',')

    with open_dataset(get_dataset_url(dataset_name)) as dataset:
        variable_unit = get_variable_unit(dataset_name,
                                          dataset.variables[variable[0]])
        variable_name = get_variable_name(dataset_name,
                                          dataset.variables[variable[0]])

    if variable_unit.startswith("Kelvin"):
        variable_unit = "Celsius"

    if anom:
        cmap = colormap.colormaps['anomaly']
        variable_name = gettext("%s Anomaly") % variable_name
    else:
        cmap = colormap.find_colormap(variable_name)

    if len(variable) == 2:
        if not anom:
            cmap = colormap.colormaps.get('speed')

        variable_name = re.sub(
            r"(?i)( x | y |zonal |meridional |northward |eastward )", " ",
            variable_name)
        variable_name = re.sub(r" +", " ", variable_name)

    fig = plt.figure(figsize=(2, 5), dpi=75)
    ax = fig.add_axes([0.05, 0.05, 0.25, 0.9])
    norm = matplotlib.colors.Normalize(vmin=scale[0], vmax=scale[1])

    formatter = ScalarFormatter()
    formatter.set_powerlimits((-3, 4))
    bar = ColorbarBase(ax,
                       cmap=cmap,
                       norm=norm,
                       orientation='vertical',
                       format=formatter)
    bar.set_label("%s (%s)" %
                  (variable_name.title(), utils.mathtext(variable_unit)),
                  fontsize=12)
    # Increase tick font size
    bar.ax.tick_params(labelsize=12)

    buf = BytesIO()
    plt.savefig(buf,
                format='png',
                dpi='figure',
                transparent=False,
                bbox_inches='tight',
                pad_inches=0.05)
    plt.close(fig)

    buf.seek(0)  # Move buffer back to beginning
    return buf
    def load_data(self):
        if isinstance(self.observation[0], numbers.Number):
            self.observation_variable_names = []
            self.observation_variable_units = []
            with Dataset(current_app.config["OBSERVATION_AGG_URL"], 'r') as ds:
                t = netcdftime.utime(ds['time'].units)
                for idx, o in enumerate(self.observation):
                    observation = {}
                    ts = t.num2date(ds['time'][o]).replace(tzinfo=pytz.UTC)
                    observation['time'] = ts.isoformat()
                    observation['longitude'] = ds['lon'][o]
                    observation['latitude'] = ds['lat'][o]

                    observation['depth'] = ds['z'][:]
                    observation['depthunit'] = ds['z'].units

                    observation['datatypes'] = []
                    data = []
                    for v in sorted(ds.variables):
                        if v in ['z', 'lat', 'lon', 'profile', 'time']:
                            continue
                        var = ds[v]
                        if var.datatype == '|S1':
                            continue

                        observation['datatypes'].append(
                            "%s [%s]" % (var.long_name, var.units))
                        data.append(var[o, :])

                        if idx == 0:
                            self.observation_variable_names.append(
                                var.long_name)
                            self.observation_variable_units.append(var.units)

                    observation['data'] = np.ma.array(data).transpose()
                    self.observation[idx] = observation

                self.points = [[o['latitude'], o['longitude']]
                               for o in self.observation]

        with open_dataset(get_dataset_url(self.dataset_name)) as dataset:
            ts = dataset.timestamps

            observation_times = []
            timestamps = []
            for o in self.observation:
                observation_time = dateutil.parser.parse(o['time'])
                observation_times.append(observation_time)

                deltas = [(x.replace(tzinfo=pytz.UTC) -
                           observation_time).total_seconds() for x in ts]

                time = np.abs(deltas).argmin()
                timestamp = ts[time]
                timestamps.append(timestamp)

            try:
                self.load_misc(dataset, self.variables)
            except IndexError as e:
                raise ClientError(
                    gettext(
                        "The selected variable(s) were not found in the dataset. \
                Most likely, this variable is a derived product from existing dataset variables. \
                Please select another variable.") + str(e))

            point_data, self.depths = self.get_data(dataset, self.variables,
                                                    time)
            point_data = np.ma.array(point_data)

            point_data = self.apply_scale_factors(point_data)

            self.variable_units, point_data = self.kelvin_to_celsius(
                self.variable_units, point_data)

        self.data = point_data
        self.observation_time = observation_time
        self.observation_times = observation_times
        self.timestamps = timestamps
        self.timestamp = timestamp
    def load_data(self):
        with open_dataset(get_dataset_url(self.dataset_name)) as dataset:
            self.load_misc(dataset, self.variables)
            self.fix_startend_times(dataset, self.starttime, self.endtime)

            if len(self.variables) == 1:
                self.variable_unit = get_variable_unit(
                    self.dataset_name, dataset.variables[self.variables[0]])
                self.variable_name = get_variable_name(
                    self.dataset_name, dataset.variables[self.variables[0]])
            else:
                self.variable_name = self.vector_name(self.variable_names[0])
                self.variable_unit = self.variable_units[0]
            var = self.variables[0]
            if self.depth != 'all' and self.depth != 'bottom' and \
                (set(dataset.variables[var].dimensions) &
                    set(dataset.depth_dimensions)):
                self.depth_label = " at %d m" % (np.round(
                    dataset.depths[self.depth]))

            elif self.depth == 'bottom':
                self.depth_label = ' at Bottom'
            else:
                self.depth_label = ''

            if not (set(dataset.variables[var].dimensions)
                    & set(dataset.depth_dimensions)):
                self.depth = 0

            times = None
            point_data = []
            for p in self.points:
                data = []
                for v in self.variables:
                    if self.depth == 'all':
                        d, dep = dataset.get_timeseries_profile(
                            float(p[0]), float(p[1]), self.starttime,
                            self.endtime, v)
                    else:
                        d, dep = dataset.get_timeseries_point(
                            float(p[0]),
                            float(p[1]),
                            self.depth,
                            self.starttime,
                            self.endtime,
                            v,
                            return_depth=True)

                    data.append(d)

                point_data.append(np.ma.array(data))

            point_data = np.ma.array(point_data)
            for idx, factor in enumerate(self.scale_factors):
                if factor != 1.0:
                    point_data[idx] = np.multiply(point_data[idx], factor)

            times = dataset.timestamps[self.starttime:self.endtime + 1]
            if self.query.get('dataset_quantum') == 'month':
                times = [datetime.date(x.year, x.month, 1) for x in times]

            # depths = dataset.depths
            depths = dep

        # TODO: pint
        if self.variable_unit.startswith("Kelvin"):
            self.variable_unit = "Celsius"
            for idx, v in enumerate(self.variables):
                point_data[:, idx, :] = point_data[:, idx, :] - 273.15

        if point_data.shape[1] == 2:
            # Under the current API this indicates that velocity data is being
            # loaded. Save each velocity component (X and Y) for possible CSV
            # export later.
            self.quiver_data = [point_data[:, 0, :], point_data[:, 1, :]]

            point_data = np.ma.expand_dims(
                np.sqrt(point_data[:, 0, :]**2 + point_data[:, 1, :]**2), 1)

        self.times = times
        self.data = point_data
        self.depths = depths
        self.depth_unit = "m"
    def load_data(self):
        """
        Calculates and returns the depth, depth-value, and depth unit from a given dataset
        Args:
            depth: Stored depth information (self.depth or self.compare['depth'])
            clip_length: How many depth values to clip (usually len(dataset.depths) - 1)
            dataset: Opened dataset
        Returns:
            (depth, depth_value, depth_unit)
        """
        def find_depth(depth, clip_length, dataset):
            depth_value = 0
            depth_unit = "m"

            if depth:
                if depth == 'bottom':
                    depth_value = 'Bottom'
                    depth_unit = ''
                    return (depth, depth_value, depth_unit)
                else:
                    depth = np.clip(int(depth), 0, clip_length)
                    depth_value = np.round(dataset.depths[depth])
                    depth_unit = "m"
                    return (depth, depth_value, depth_unit)

            return (depth, depth_value, depth_unit)

        # Load left/Main Map
        with open_dataset(get_dataset_url(self.dataset_name)) as dataset:

            latvar, lonvar = utils.get_latlon_vars(dataset)
            self.depth, self.depth_value, self.depth_unit = find_depth(
                self.depth,
                len(dataset.depths) - 1, dataset)

            self.fix_startend_times(dataset, self.starttime, self.endtime)
            time = list(range(self.starttime, self.endtime + 1))

            if len(self.variables) > 1:
                v = []
                for name in self.variables:
                    self.path_points, self.distance, t, value = dataset.get_path(
                        self.points, self.depth, time, name)
                    v.append(value**2)

                value = np.sqrt(np.ma.sum(v, axis=0))

                self.variable_name = self.get_variable_names(
                    dataset, self.variables)[0]
                self.variable_name = self.vector_name(self.variable_name)
            else:
                self.path_points, self.distance, t, value = dataset.get_path(
                    self.points, self.depth, time, self.variables[0])
                self.variable_name = self.get_variable_names(
                    dataset, self.variables)[0]

            variable_units = self.get_variable_units(dataset, self.variables)
            scale_factors = self.get_variable_scale_factors(
                dataset, self.variables)

            self.variable_unit, self.data = self.kelvin_to_celsius(
                variable_units[0], value)
            self.times = dataset.timestamps[self.starttime:self.endtime + 1]
            self.data = np.multiply(self.data, scale_factors[0])
            self.data = self.data.transpose()

            # Get colourmap
            if self.cmap is None:
                self.cmap = colormap.find_colormap(self.variable_name)

        # Load data sent from Right Map (if in compare mode)
        if self.compare:
            with open_dataset(get_dataset_url(
                    self.compare['dataset'])) as dataset:

                latvar, lonvar = utils.get_latlon_vars(dataset)
                self.compare['depth'], self.compare[
                    'depth_value'], self.compare['depth_unit'] = find_depth(
                        self.compare['depth'],
                        len(dataset.depths) - 1, dataset)

                self.fix_startend_times(dataset, self.compare['starttime'],
                                        self.compare['endtime'])
                time = list(
                    range(self.compare['starttime'],
                          self.compare['endtime'] + 1))

                if len(self.compare['variables']) > 1:
                    v = []
                    for name in self.compare['variables']:
                        path, distance, t, value = dataset.get_path(
                            self.points, self.compare['depth'], time, name)
                        v.append(value**2)

                    value = np.sqrt(np.ma.sum(v, axis=0))
                    self.compare['variable_name'] = self.get_variable_names(
                        dataset, self.compare['variables'])[0]
                    self.compare['variable_name'] = self.vector_name(
                        self.compare['variable_name'])
                else:
                    path, distance, t, value = dataset.get_path(
                        self.points, self.compare['depth'], time,
                        self.compare['variables'][0])
                    self.compare['variable_name'] = self.get_variable_names(
                        dataset, self.compare['variables'])[0]

                # Colourmap
                if (self.compare['colormap'] == 'default'):
                    self.compare['colormap'] = colormap.find_colormap(
                        self.compare['variable_name'])
                else:
                    self.compare['colormap'] = colormap.find_colormap(
                        self.compare['colormap'])

                variable_units = self.get_variable_units(
                    dataset, self.compare['variables'])
                scale_factors = self.get_variable_scale_factors(
                    dataset, self.compare['variables'])

                self.compare['variable_unit'], self.compare[
                    'data'] = self.kelvin_to_celsius(variable_units[0], value)
                self.compare['times'] = dataset.timestamps[
                    self.compare['starttime']:self.compare['endtime'] + 1]
                self.compare['data'] = np.multiply(self.compare['data'],
                                                   scale_factors[0])
                self.compare['data'] = self.compare['data'].transpose()

                # Comparison over different time ranges makes no sense
                if self.starttime != self.compare['starttime'] or\
                    self.endtime != self.compare['endtime']:
                    raise ClientError(
                        gettext(
                            "Please ensure the Start Time and End Time for the Left and Right maps are identical."
                        ))
Beispiel #21
0
def get_data_v1_0(dataset, variable, time, depth, location):
    with open_dataset(get_dataset_url(dataset)) as ds:
        date = ds.convert_to_timestamp(time)
        #print(date)
        return routes.routes_impl.get_data_impl(dataset, variable, date, depth,
                                                location)
Beispiel #22
0
    def get_values(self, area_info, dataset_name, variables):
        with open_dataset(get_dataset_url(dataset_name)) as dataset:

            if self.time is None or (type(self.time) == str
                                     and len(self.time) == 0):
                time = -1
            else:
                time = int(self.time)

            if time < 0:
                time += len(dataset.timestamps)
            time = np.clip(time, 0, len(dataset.timestamps) - 1)

            depth = 0
            depthm = 0

            if self.depth:
                if self.depth == 'bottom':
                    depth = 'bottom'
                    depthm = 'Bottom'
                if len(self.depth) > 0 and \
                        self.depth != 'bottom':
                    depth = int(self.depth)

                    depth = np.clip(depth, 0, len(dataset.depths) - 1)
                    depthm = dataset.depths[depth]

            lat, lon = np.meshgrid(
                np.linspace(area_info.bounds[0], area_info.bounds[2], 50),
                area_info.spaced_points)

            output_fmtstr = "%6.5g"
            for v_idx, v in enumerate(variables):
                var = dataset.variables[v]

                variable_name = get_variable_name(dataset_name, var)
                variable_unit = get_variable_unit(dataset_name, var)
                scale_factor = get_variable_scale_factor(dataset_name, var)

                lat, lon, d = dataset.get_raw_point(lat.ravel(), lon.ravel(),
                                                    depth, time, v)

                if scale_factor != 1.0:
                    d = np.multiply(d, scale_factor)

                if variable_unit.startswith("Kelvin"):
                    variable_unit = "Celsius"
                    d = d - 273.15

                lon[np.where(lon > 180)] -= 360

                if len(var.dimensions) == 3:
                    variable_depth = ""
                elif depth == 'bottom':
                    variable_depth = "(@ Bottom)"
                else:
                    variable_depth = "(@%d m)" % np.round(depthm)

                points = [
                    Point(p)
                    for p in zip(lat.values.ravel(), lon.values.ravel())
                ]

                for i, a in enumerate(area_info.area_query):
                    indices = np.where(
                        map(lambda p, poly=area_info.area_polys[i]: poly.
                            contains(p),
                            points))

                    selection = np.ma.array(d.values.ravel()[indices])
                    if len(selection) > 0 and not selection.mask.all():
                        area_info.output[i]['variables'].append({
                            'name': ("%s %s" %
                                     (variable_name, variable_depth)).strip(),
                            'unit':
                            variable_unit,
                            'min':
                            output_fmtstr %
                            (np.ma.amin(selection).astype(float)),
                            'max':
                            output_fmtstr %
                            (np.ma.amax(selection).astype(float)),
                            'mean':
                            output_fmtstr %
                            (np.ma.mean(selection).astype(float)),
                            'median':
                            output_fmtstr %
                            (np.ma.median(selection).astype(float)),
                            'stddev':
                            output_fmtstr %
                            (np.ma.std(selection).astype(float)),
                            'num':
                            "%d" % selection.count(),
                        })
                    else:
                        area_info.output[i]['variables'].append({
                            'name': ("%s %s" %
                                     (variable_name, variable_depth)).strip(),
                            'unit':
                            variable_unit,
                            'min':
                            gettext("No Data"),
                            'max':
                            gettext("No Data"),
                            'mean':
                            gettext("No Data"),
                            'median':
                            gettext("No Data"),
                            'stddev':
                            gettext("No Data"),
                            'num':
                            "0",
                        })
                        ClientError(
                            gettext(
                                "there are no datapoints in the area you selected. \
                                                you may have selected a area on land or you may \
                                                have an ara that is smallenough to fit between \
                                                the datapoints try selection a different area or \
                                                a larger area"))

            area_info.stats = area_info.output
            return

        raise ServerError(
            gettext("An Error has occurred. When opening the dataset. \
                                Please try again or try a different dataset. \
                                If you would like to report this error please \
                                contact [email protected]"))
Beispiel #23
0
    def load_data(self):
        distance = VincentyDistance()
        height = distance.measure(
            (self.bounds[0], self.centroid[1]),
            (self.bounds[2], self.centroid[1])) * 1000 * 1.25
        width = distance.measure(
            (self.centroid[0], self.bounds[1]),
            (self.centroid[0], self.bounds[3])) * 1000 * 1.25

        if self.projection == 'EPSG:32661':  # north pole projection
            near_pole, covers_pole = self.pole_proximity(self.points[0])
            blat = min(self.bounds[0], self.bounds[2])
            blat = 5 * np.floor(blat / 5)

            if self.centroid[0] > 80 or near_pole or covers_pole:
                self.basemap = basemap.load_map(
                    'npstere', self.centroid, height, width,
                    min(self.bounds[0], self.bounds[2]))
            else:
                self.basemap = basemap.load_map('lcc', self.centroid, height,
                                                width)
        elif self.projection == 'EPSG:3031':  # south pole projection
            near_pole, covers_pole = self.pole_proximity(self.points[0])
            blat = max(self.bounds[0], self.bounds[2])
            blat = 5 * np.ceil(blat / 5)
            if ((self.centroid[0] < -80 or self.bounds[1] < -80
                 or self.bounds[3] < -80) or covers_pole
                ) or near_pole:  # is centerered close to the south pole
                self.basemap = basemap.load_map(
                    'spstere', self.centroid, height, width,
                    max(self.bounds[0], self.bounds[2]))
            else:
                self.basemap = basemap.load_map('lcc', self.centroid, height,
                                                width)
        elif abs(self.centroid[1] - self.bounds[1]) > 90:

            height_bounds = [self.bounds[0], self.bounds[2]]
            width_bounds = [self.bounds[1], self.bounds[3]]
            height_buffer = (abs(height_bounds[1] - height_bounds[0])) * 0.1
            width_buffer = (abs(width_bounds[0] - width_bounds[1])) * 0.1

            if abs(width_bounds[1] - width_bounds[0]) > 360:
                raise ClientError(
                    gettext(
                        "You have requested an area that exceeds the width of the world. \
                                        Thinking big is good but plots need to be less than 360 deg wide."
                    ))

            if height_bounds[1] < 0:
                height_bounds[1] = height_bounds[1] + height_buffer
            else:
                height_bounds[1] = height_bounds[1] + height_buffer
            if height_bounds[0] < 0:
                height_bounds[0] = height_bounds[0] - height_buffer
            else:
                height_bounds[0] = height_bounds[0] - height_buffer

            new_width_bounds = []
            new_width_bounds.append(width_bounds[0] - width_buffer)

            new_width_bounds.append(width_bounds[1] + width_buffer)

            if abs(new_width_bounds[1] - new_width_bounds[0]) > 360:
                width_buffer = np.floor(
                    (360 - abs(width_bounds[1] - width_bounds[0])) / 2)
                new_width_bounds[0] = width_bounds[0] - width_buffer
                new_width_bounds[1] = width_bounds[1] + width_buffer

            if new_width_bounds[0] < -360:
                new_width_bounds[0] = -360
            if new_width_bounds[1] > 720:
                new_width_bounds[1] = 720

            self.basemap = basemap.load_map(
                'merc', self.centroid, (height_bounds[0], height_bounds[1]),
                (new_width_bounds[0], new_width_bounds[1]))
        else:
            self.basemap = basemap.load_map('lcc', self.centroid, height,
                                            width)

        if self.basemap.aspect < 1:
            gridx = 500
            gridy = int(500 * self.basemap.aspect)
        else:
            gridy = 500
            gridx = int(500 / self.basemap.aspect)

        self.longitude, self.latitude = self.basemap.makegrid(gridx, gridy)

        with open_dataset(get_dataset_url(self.dataset_name)) as dataset:
            if self.time < 0:
                self.time += len(dataset.timestamps)
            self.time = np.clip(self.time, 0, len(dataset.timestamps) - 1)

            self.variable_unit = self.get_variable_units(
                dataset, self.variables)[0]
            self.variable_name = self.get_variable_names(
                dataset, self.variables)[0]
            scale_factor = self.get_variable_scale_factors(
                dataset, self.variables)[0]

            if self.cmap is None:
                if len(self.variables) == 1:
                    self.cmap = colormap.find_colormap(self.variable_name)
                else:
                    self.cmap = colormap.colormaps.get('speed')

            if len(self.variables) == 2:
                self.variable_name = self.vector_name(self.variable_name)

            if self.depth == 'bottom':
                depth_value = 'Bottom'
            else:
                self.depth = np.clip(int(self.depth), 0,
                                     len(dataset.depths) - 1)
                depth_value = dataset.depths[self.depth]

            data = []
            allvars = []
            for v in self.variables:
                var = dataset.variables[v]
                allvars.append(v)
                if self.filetype in ['csv', 'odv', 'txt']:
                    d, depth_value = dataset.get_area(np.array(
                        [self.latitude, self.longitude]),
                                                      self.depth,
                                                      self.time,
                                                      v,
                                                      self.interp,
                                                      self.radius,
                                                      self.neighbours,
                                                      return_depth=True)
                else:
                    d = dataset.get_area(
                        np.array([self.latitude,
                                  self.longitude]), self.depth, self.time, v,
                        self.interp, self.radius, self.neighbours)

                d = np.multiply(d, scale_factor)
                self.variable_unit, d = self.kelvin_to_celsius(
                    self.variable_unit, d)

                data.append(d)
                if self.filetype not in ['csv', 'odv', 'txt']:
                    if len(var.dimensions) == 3:
                        self.depth_label = ""
                    elif self.depth == 'bottom':
                        self.depth_label = " at Bottom"
                    else:
                        self.depth_label = " at " + \
                            str(int(np.round(depth_value))) + " m"

            if len(data) == 2:
                data[0] = np.sqrt(data[0]**2 + data[1]**2)

            self.data = data[0]

            quiver_data = []
            # Store the quiver data on the same grid as the main variable. This
            # will only be used for CSV export.
            quiver_data_fullgrid = []

            if self.quiver is not None and \
                self.quiver['variable'] != '' and \
                    self.quiver['variable'] != 'none':
                for v in self.quiver['variable'].split(','):
                    allvars.append(v)
                    var = dataset.variables[v]
                    quiver_unit = get_variable_unit(self.dataset_name, var)
                    quiver_name = get_variable_name(self.dataset_name, var)
                    quiver_lon, quiver_lat = self.basemap.makegrid(50, 50)
                    d = dataset.get_area(
                        np.array([quiver_lat, quiver_lon]),
                        self.depth,
                        self.time,
                        v,
                        self.interp,
                        self.radius,
                        self.neighbours,
                    )
                    quiver_data.append(d)
                    # Get the quiver data on the same grid as the main
                    # variable.
                    d = dataset.get_area(
                        np.array([self.latitude, self.longitude]),
                        self.depth,
                        self.time,
                        v,
                        self.interp,
                        self.radius,
                        self.neighbours,
                    )
                    quiver_data_fullgrid.append(d)

                self.quiver_name = self.vector_name(quiver_name)
                self.quiver_longitude = quiver_lon
                self.quiver_latitude = quiver_lat
                self.quiver_unit = quiver_unit
            self.quiver_data = quiver_data
            self.quiver_data_fullgrid = quiver_data_fullgrid

            if all(
                [len(dataset.variables[v].dimensions) == 3 for v in allvars]):
                self.depth = 0

            contour_data = []
            if self.contour is not None and \
                self.contour['variable'] != '' and \
                    self.contour['variable'] != 'none':
                d = dataset.get_area(
                    np.array([self.latitude, self.longitude]),
                    self.depth,
                    self.time,
                    self.contour['variable'],
                    self.interp,
                    self.radius,
                    self.neighbours,
                )
                contour_unit = get_variable_unit(
                    self.dataset_name,
                    dataset.variables[self.contour['variable']])
                contour_name = get_variable_name(
                    self.dataset_name,
                    dataset.variables[self.contour['variable']])
                contour_factor = get_variable_scale_factor(
                    self.dataset_name,
                    dataset.variables[self.contour['variable']])
                contour_unit, d = self.kelvin_to_celsius(contour_unit, d)
                d = np.multiply(d, contour_factor)
                contour_data.append(d)
                self.contour_unit = contour_unit
                self.contour_name = contour_name

            self.contour_data = contour_data

            self.timestamp = dataset.timestamps[self.time]

        if self.compare:
            self.variable_name += " Difference"
            with open_dataset(get_dataset_url(
                    self.compare['dataset'])) as dataset:
                data = []
                for v in self.compare['variables']:
                    var = dataset.variables[v]
                    d = dataset.get_area(
                        np.array([self.latitude, self.longitude]),
                        self.compare['depth'],
                        self.compare['time'],
                        v,
                        self.interp,
                        self.radius,
                        self.neighbours,
                    )
                    data.append(d)

                if len(data) == 2:
                    data = np.sqrt(data[0]**2 + data[1]**2)
                else:
                    data = data[0]

                u, data = self.kelvin_to_celsius(
                    dataset.variables[self.compare['variables'][0]].unit, data)

                self.data -= data

        # Load bathymetry data
        self.bathymetry = overlays.bathymetry(self.basemap,
                                              self.latitude,
                                              self.longitude,
                                              blur=2)

        if self.depth != 'bottom' and self.depth != 0:
            if len(quiver_data) > 0:
                quiver_bathymetry = overlays.bathymetry(
                    self.basemap, quiver_lat, quiver_lon)

            self.data[np.where(self.bathymetry < depth_value)] = np.ma.masked
            for d in self.quiver_data:
                d[np.where(quiver_bathymetry < depth_value)] = np.ma.masked
            for d in self.contour_data:
                d[np.where(self.bathymetry < depth_value)] = np.ma.masked
        else:
            mask = maskoceans(self.longitude, self.latitude, self.data, True,
                              'h', 1.25).mask
            self.data[~mask] = np.ma.masked
            for d in self.quiver_data:
                mask = maskoceans(self.quiver_longitude, self.quiver_latitude,
                                  d).mask
                d[~mask] = np.ma.masked
            for d in contour_data:
                mask = maskoceans(self.longitude, self.latitude, d).mask
                d[~mask] = np.ma.masked

        if self.area and self.filetype in ['csv', 'odv', 'txt', 'geotiff']:
            area_polys = []
            for a in self.area:
                rings = [LinearRing(p) for p in a['polygons']]
                innerrings = [LinearRing(p) for p in a['innerrings']]

                polygons = []
                for r in rings:
                    inners = []
                    for ir in innerrings:
                        if r.contains(ir):
                            inners.append(ir)

                    polygons.append(Poly(r, inners))

                area_polys.append(MultiPolygon(polygons))

            points = [
                Point(p)
                for p in zip(self.latitude.ravel(), self.longitude.ravel())
            ]

            indicies = []
            for a in area_polys:
                indicies.append(
                    np.where(
                        list(map(lambda p, poly=a: poly.contains(p),
                                 points)))[0])

            indicies = np.unique(np.array(indicies).ravel())
            newmask = np.ones(self.data.shape, dtype=bool)
            newmask[np.unravel_index(indicies, newmask.shape)] = False
            self.data.mask |= newmask

        self.depth_value = depth_value
    def load_data(self):
        with open_dataset(get_dataset_url(self.dataset_name)) as dataset:
            if self.time < 0:
                self.time += len(dataset.timestamps)
            time = np.clip(self.time, 0, len(dataset.timestamps) - 1)

            for idx, v in enumerate(self.variables):
                var = dataset.variables[v]
                if not (set(var.dimensions) & set(dataset.depth_dimensions)):
                    for potential in dataset.variables:
                        if potential in self.variables:
                            continue
                        pot = dataset.variables[potential]
                        if (set(pot.dimensions) &
                                set(dataset.depth_dimensions)):
                            if len(pot.dimensions) > 3:
                                self.variables[idx] = potential.key

            value = parallel = perpendicular = magnitude = None

            variable_names = self.get_variable_names(dataset, self.variables)
            variable_units = self.get_variable_units(dataset, self.variables)
            scale_factors = self.get_variable_scale_factors(dataset, self.variables)

            # Load data sent from primary/Left Map
            if len(self.variables) > 1:
                # Only velocity has 2 variables
                v = []
                for name in self.variables:
                    v.append(dataset.variables[name])

                distances, times, lat, lon, bearings = geo.path_to_points(
                    self.points, 100
                )
                transect_pts, distance, x, dep = dataset.get_path_profile(
                    self.points, time, self.variables[0], 100)
                transect_pts, distance, y, dep = dataset.get_path_profile(
                    self.points, time, self.variables[1], 100)

                # Calculate vector components
                x = np.multiply(x, scale_factors[0])
                y = np.multiply(y, scale_factors[1])

                r = np.radians(np.subtract(90, bearings))
                theta = np.arctan2(y, x) - r
                magnitude = np.sqrt(x ** 2 + y ** 2)

                parallel = magnitude * np.cos(theta)
                perpendicular = magnitude * np.sin(theta)

            else:
                # Get data for one variable
                transect_pts, distance, value, dep = dataset.get_path_profile(
                    self.points, time, self.variables[0])

                value = np.multiply(value, scale_factors[0])

            # Get variable units and convert to Celsius if needed
            variable_units[0], value = self.kelvin_to_celsius(
                variable_units[0],
                value
            )

            if len(self.variables) == 2:
                variable_names[0] = self.vector_name(variable_names[0])

            # If a colourmap has not been manually specified by the
            # Navigator...
            if self.cmap is None:
                self.cmap = colormap.find_colormap(variable_names[0])

            self.timestamp = dataset.timestamps[int(time)]

            self.depth = dep
            self.depth_unit = "m"

            self.transect_data = {
                "points": transect_pts,
                "distance": distance,
                "data": value,
                "name": variable_names[0],
                "unit": variable_units[0],
                "parallel": parallel,
                "perpendicular": perpendicular,
                "magnitude": magnitude,
            }

            if self.surface is not None:
                surface_pts, surface_dist, t, surface_value = \
                    dataset.get_path(
                        self.points,
                        0,
                        time,
                        self.surface,
                    )
                surface_unit = get_variable_unit(
                    self.dataset_name,
                    dataset.variables[self.surface]
                )
                surface_name = get_variable_name(
                    self.dataset_name,
                    dataset.variables[self.surface]
                )
                surface_factor = get_variable_scale_factor(
                    self.dataset_name,
                    dataset.variables[self.surface]
                )
                surface_value = np.multiply(surface_value, surface_factor)
                surface_unit, surface_value = self.kelvin_to_celsius(
                    surface_unit,
                    surface_value
                )

                self.surface_data = {
                    "points": surface_pts,
                    "distance": surface_dist,
                    "data": surface_value,
                    "name": surface_name,
                    "unit": surface_unit
                }

        # Load data sent from Right Map (if in compare mode)
        if self.compare:
            def interpolate_depths(data, depth_in, depth_out):
                output = []
                for i in range(0, depth_in.shape[0]):
                    f = interp1d(
                        depth_in[i],
                        data[:, i],
                        bounds_error=False,
                        assume_sorted=True,
                    )
                    output.append(
                        f(depth_out[i].view(np.ma.MaskedArray).filled())
                    )

                return np.ma.masked_invalid(output).transpose()

            with open_dataset(get_dataset_url(self.compare['dataset'])) as dataset:
                # Get and format date
                self.compare['date'] = np.clip(np.int64(self.compare['time']), 0, len(dataset.timestamps) - 1)
                self.compare['date'] = dataset.timestamps[int(self.compare['date'])]

                # 1 variable
                if len(self.compare['variables']) == 1:
                    
                    # Get and store the "nicely formatted" string for the variable name
                    self.compare['name'] = self.get_variable_names(dataset, self.compare['variables'])[0]
                    
                    # Find correct colourmap
                    if (self.compare['colormap'] == 'default'):
                        self.compare['colormap'] = colormap.find_colormap(self.compare['name'])
                    else:
                        self.compare['colormap'] = colormap.find_colormap(self.compare['colormap'])

                    climate_points, climate_distance, climate_data, cdep = \
                        dataset.get_path_profile(self.points,
                                                 self.compare['time'],
                                                 self.compare['variables'][0])
                    
                    # Get variable units and convert to Celsius if needed
                    self.compare['unit'], climate_data = self.kelvin_to_celsius(
                        dataset.variables[self.compare['variables'][0]].unit,
                        climate_data
                    )
                    self.__fill_invalid_shift(climate_data)

                    if (self.depth.shape != cdep.shape) or \
                       (self.depth != cdep).any():
                        # Need to interpolate the depths
                        climate_data = interpolate_depths(
                            climate_data,
                            cdep,
                            self.depth
                        )

                    if self.transect_data['data'] is None:
                        self.transect_data['magnitude'] -= climate_data
                        self.transect_data['parallel'] -= climate_data
                        self.transect_data['perpendicular'] -= climate_data
                    else:
                        self.transect_data['compare_data'] = climate_data
                
                # Velocity variables
                else:
                    # Get and store the "nicely formatted" string for the variable name
                    self.compare['name'] = self.get_variable_names(dataset, self.compare['variables'])[0]
                    
                    
                    climate_pts, climate_distance, climate_x, cdep = \
                        dataset.get_path_profile(
                            self.points,
                            self.compare['time'],
                            self.compare['variables'][0],
                            100
                        )
                    climate_pts, climate_distance, climate_y, cdep = \
                        dataset.get_path_profile(
                            self.points,
                            self.compare['time'],
                            self.compare['variables'][0],
                            100
                        )

                    climate_distances, ctimes, clat, clon, bearings = \
                        geo.path_to_points(self.points, 100)

                    r = np.radians(np.subtract(90, bearings))
                    theta = np.arctan2(climate_y, climate_x) - r
                    mag = np.sqrt(climate_x ** 2 + climate_y ** 2)

                    if np.all(self.depth != cdep):
                        theta = interpolate_depths(
                            theta,
                            cdep,
                            self.depth
                        )
                        self.__fill_invalid_shift(theta)
                        mag = interpolate_depths(
                            mag,
                            cdep,
                            self.depth
                        )
                        self.__fill_invalid_shift(mag)

                    self.compare['parallel'] = mag * np.cos(theta)
                    self.compare['perpendicular'] = mag * np.sin(theta)

                    """
                    if self.transect_data['parallel'] is None:
                        self.transect_data['data'] -= mag
                    else:
                        self.transect_data['parallel'] -= climate_parallel
                        self.transect_data['perpendicular'] -= climate_perpendicular
                    """

        # Bathymetry
        with Dataset(current_app.config['BATHYMETRY_FILE'], 'r') as dataset:
            bath_x, bath_y = bathymetry(
                dataset.variables['y'],
                dataset.variables['x'],
                dataset.variables['z'],
                self.points)

        self.bathymetry = {
            'x': bath_x,
            'y': bath_y
        }
Beispiel #25
0
    def load_data(self):
        ds_url = current_app.config['DRIFTER_URL']
        data_names = []
        data_units = []
        with Dataset(ds_url % self.drifter, 'r') as ds:
            self.name = ds.buoyid

            self.imei = str(chartostring(ds['imei'][0]))
            self.wmo = str(chartostring(ds['wmo'][0]))

            t = netcdftime.utime(ds['data_date'].units)

            d = []
            for v in self.buoyvariables:
                d.append(ds[v][:])
                if "long_name" in ds[v].ncattrs():
                    data_names.append(ds[v].long_name)
                else:
                    data_names.append(v)

                if "units" in ds[v].ncattrs():
                    data_units.append(ds[v].units)
                else:
                    data_units.append(None)

            self.data = d

            self.times = t.num2date(ds['data_date'][:])
            self.points = np.array([
                ds['latitude'][:],
                ds['longitude'][:],
            ]).transpose()

        data_names = data_names[:len(self.buoyvariables)]
        data_units = data_units[:len(self.buoyvariables)]

        for i, t in enumerate(self.times):
            if t.tzinfo is None:
                self.times[i] = t.replace(tzinfo=pytz.UTC)

        self.data_names = data_names
        self.data_units = data_units

        if self.starttime is not None:
            d = dateutil.parser.parse(self.starttime)
            self.start = np.where(self.times >= d)[0].min()
        else:
            self.start = 0

        if self.endtime is not None:
            d = dateutil.parser.parse(self.endtime)
            self.end = np.where(self.times <= d)[0].max() + 1
        else:
            self.end = len(self.times) - 1

        if self.start < 0:
            self.start += len(self.times)
        self.start = np.clip(self.start, 0, len(self.times) - 1)
        if self.end < 0:
            self.end += len(self.times)
        self.end = np.clip(self.end, 0, len(self.times) - 1)

        with open_dataset(get_dataset_url(self.dataset_name)) as dataset:
            depth = int(self.depth)

            try:
                model_start = np.where(
                    dataset.timestamps <= self.times[self.start]
                )[0][-1]
            except IndexError:
                model_start = 0

            model_start -= 1
            model_start = np.clip(model_start, 0, len(dataset.timestamps) - 1)

            try:
                model_end = np.where(
                    dataset.timestamps >= self.times[self.end]
                )[0][0]
            except IndexError:
                model_end = len(dataset.timestamps) - 1

            model_end += 1
            model_end = np.clip(
                model_end,
                model_start,
                len(dataset.timestamps) - 1
            )

            model_times = [time.mktime(t.timetuple()) for t in dataset.timestamps[model_start:model_end + 1]]
            output_times = [time.mktime(t.timetuple()) for t in self.times[self.start:self.end + 1]]
            d = []
            for v in self.variables:
                pts, dist, mt, md = dataset.get_path(
                    self.points[self.start:self.end + 1],
                    depth,
                    list(range(model_start, model_end + 1)),
                    v,
                    times=output_times
                )

                f = interp1d(
                    model_times,
                    md,
                    assume_sorted=True,
                    bounds_error=False,
                )

                d.append(np.diag(f(mt)))

            model_data = np.ma.array(d)

            variable_names = []
            variable_units = []
            scale_factors = []

            for v in self.variables:
                variable_units.append(get_variable_unit(self.dataset_name,
                                                        dataset.variables[v]))
                variable_names.append(get_variable_name(self.dataset_name,
                                                        dataset.variables[v]))
                scale_factors.append(
                    get_variable_scale_factor(self.dataset_name,
                                              dataset.variables[v])
                )

            for idx, sf in enumerate(scale_factors):
                model_data[idx, :] = np.multiply(model_data[idx, :], sf)

            for idx, u in enumerate(variable_units):
                variable_units[idx], model_data[idx, :] = \
                    self.kelvin_to_celsius(u, model_data[idx, :])

            self.model_data = model_data
            self.model_times = list(map(datetime.datetime.utcfromtimestamp, mt))
            self.variable_names = variable_names
            self.variable_units = variable_units
def vars_query_impl(args):
    """
    API Format: /api/variables/?dataset='...'&3d_only='...'&vectors_only='...'&vectors='...'

    **Only use variables required for your specific request**

    dataset      : Dataset to extract data - Can be found using /api/datasets
    3d_only      : Boolean Value; When True, only variables with depth will be shown
    vectors_only : Boolean Value; When True, ONLY variables with magnitude will be shown 
    vectors      : Boolean Value; When True, magnitude components will be included

    **Boolean: True / False**
    """

    if 'dataset' not in args.keys():
        raise APIError("Please Specify a Dataset Using ?dataset='...' ")

    data = []  #Initializes empty data list
    dataset = args['dataset']  #Dataset Specified in query

    #Queries config files
    if get_dataset_climatology(
            dataset
    ) != "" and 'anom' in args:  #If a url exists for the dataset and an anomaly

        with open_dataset(get_dataset_climatology(dataset)) as ds:
            climatology_variables = list(map(str, ds.variables))

    else:
        climatology_variables = []

    #three_d = '3d_only' in args     #Checks if 3d_only is in args
    #If three_d is true - Only 3d variables will be returned

    with open_dataset(get_dataset_url(dataset)) as ds:
        if 'vectors_only' not in args:  #Vectors_only -> Magnitude Only

            # 'v' is a Variable in the Dataset
            #  v Contains:  dimensions, key, name, unit, valid_min, valid_max
            for v in ds.variables:  #Iterates through all the variables in the dataset

                #If a time period and at least one other unit type is specified
                if ('time_counter' in v.dimensions or
                    'time' in v.dimensions) \
                        and ('y' in v.dimensions or
                             'yc' in v.dimensions or
                             'node' in v.dimensions or
                             'nele' in v.dimensions or
                             'latitude' in v.dimensions or
                             'lat' in v.dimensions):
                    if ('3d_only' in args) and not (set(ds.depth_dimensions)
                                                    & set(v.dimensions)):
                        continue
                    else:
                        if not is_variable_hidden(dataset, v):

                            data.append({
                                'id': v.key,
                                'value': get_variable_name(dataset, v),
                                'scale': get_variable_scale(dataset, v)
                            })
                            if v.key in climatology_variables:
                                data.append({
                                    'id':
                                    v.key + "_anom",
                                    'value':
                                    get_variable_name(dataset, v) + " Anomaly",
                                    'scale': [-10, 10]
                                })

        VECTOR_MAP = {
            'vozocrtx':
            'vozocrtx,vomecrty',
            'itzocrtx':
            'itzocrtx,itmecrty',
            'iicevelu':
            'iicevelu,iicevelv',
            'u_wind':
            'u_wind,v_wind',
            'u':
            'u,v',
            'ua':
            'ua,va',
            'u-component_of_wind_height_above_ground':
            'u-component_of_wind_height_above_ground,v-component_of_wind_height_above_ground',
        }

        #If Vectors are needed
        if 'vectors' in args or 'vectors_only' in args:

            rxp = r"(?i)(x |y |zonal |meridional |northward |eastward |East |North)"
            for key, value in list(VECTOR_MAP.items()):
                if key in ds.variables:
                    n = get_variable_name(
                        dataset,
                        ds.variables[key])  #Returns a normal variable type
                    data.append({
                        'id':
                        value,
                        'value':
                        re.sub(r" +", " ", re.sub(rxp, " ", n)),
                        'scale':
                        [0,
                         get_variable_scale(dataset, ds.variables[key])[1]]
                    })

    data = sorted(
        data,
        key=lambda k: k['value'])  #Sorts data alphabetically using the value

    #Data is set of scale, id, value objects
    resp = jsonify(data)
    return resp
Beispiel #27
0
def plot(projection, x, y, z, args):
    lat, lon = get_latlon_coords(projection, x, y, z)
    if len(lat.shape) == 1:
        lat, lon = np.meshgrid(lat, lon)

    dataset_name = args.get('dataset')
    variable = args.get('variable')
    if variable.endswith('_anom'):
        variable = variable[0:-5]
        anom = True
    else:
        anom = False

    variable = variable.split(',')

    depth = args.get('depth')

    scale = args.get('scale')
    scale = [float(component) for component in scale.split(',')]

    data = []
    with open_dataset(get_dataset_url(dataset_name)) as dataset:
        if args.get('time') is None or (type(args.get('time')) == str
                                        and len(args.get('time')) == 0):
            time = -1
        else:
            time = int(args.get('time'))

        t_len = len(dataset.timestamps)
        while time >= t_len:
            time -= t_len

        while time < 0:
            time += len(dataset.timestamps)

        timestamp = dataset.timestamps[time]

        for v in variable:
            data.append(
                dataset.get_area(np.array([lat, lon]), depth, time, v,
                                 args.get('interp'), args.get('radius'),
                                 args.get('neighbours')))

        variable_name = get_variable_name(dataset_name,
                                          dataset.variables[variable[0]])
        variable_unit = get_variable_unit(dataset_name,
                                          dataset.variables[variable[0]])
        scale_factor = get_variable_scale_factor(
            dataset_name, dataset.variables[variable[0]])
        if anom:
            cmap = colormap.colormaps['anomaly']
        else:
            cmap = colormap.find_colormap(variable_name)

        if depth != 'bottom':
            depthm = dataset.depths[depth]
        else:
            depthm = 0

    if scale_factor != 1.0:
        for idx, val in enumerate(data):
            data[idx] = np.multiply(val, scale_factor)

    if variable_unit.startswith("Kelvin"):
        variable_unit = "Celsius"
        for idx, val in enumerate(data):
            data[idx] = np.add(val, -273.15)

    if len(data) == 1:
        data = data[0]

    if len(data) == 2:
        data = np.sqrt(data[0]**2 + data[1]**2)
        if not anom:
            cmap = colormap.colormaps.get('speed')

    if anom:
        with open_dataset(get_dataset_climatology(dataset_name)) as dataset:
            a = dataset.get_area(np.array([lat, lon]), depth,
                                 timestamp.month - 1, v, args.get('interp'),
                                 args.get('radius'), args.get('neighbours'))
            data -= a
    data = data.transpose()
    xpx = x * 256
    ypx = y * 256

    with Dataset(current_app.config['ETOPO_FILE'] % (projection, z),
                 'r') as dataset:
        bathymetry = dataset["z"][ypx:(ypx + 256), xpx:(xpx + 256)]

    bathymetry = gaussian_filter(bathymetry, 0.5)

    data[np.where(bathymetry > -depthm)] = np.ma.masked

    sm = matplotlib.cm.ScalarMappable(matplotlib.colors.Normalize(
        vmin=scale[0], vmax=scale[1]),
                                      cmap=cmap)

    img = sm.to_rgba(np.ma.masked_invalid(np.squeeze(data)))
    im = Image.fromarray((img * 255.0).astype(np.uint8))

    buf = BytesIO()
    im.save(buf, format='PNG', optimize=True)
    return buf