def halogenbond_acceptor_halogen(mol1, mol2, base_angle_acceptor=120, base_angle_halogen=180, tolerance=30, cutoff=4): """Returns pairs of acceptor-halogen atoms, which meet halogen bond criteria Parameters ---------- mol1, mol2 : oddt.toolkit.Molecule object Molecules to compute halogen bond acceptor and halogen pairs cutoff : float, (default=4) Distance cutoff for A-H pairs base_angle_acceptor : int, (default=120) Base angle determining allowed direction of halogen bond formation, which is devided by the number of neighbors of acceptor atom to establish final directional angle base_angle_halogen : int (default=180) Ideal base angle between halogen bond and halogen-neighbor bond tolerance : int, (default=30) Range (+/- tolerance) from perfect direction (base_angle/n_neighbors) in which halogen bonds are considered as strict. Returns ------- a, h : atom_dict-type numpy array Aligned arrays of atoms forming halogen bond, firstly acceptors, secondly halogens strict : numpy array, dtype=bool Boolean array align with atom pairs, informing whether atoms form 'strict' halogen bond (pass all angular cutoffs). If false, only distance cutoff is met, therefore the bond is 'crude'. """ a, h = close_contacts(mol1.atom_dict[mol1.atom_dict['isacceptor']], mol2.atom_dict[mol2.atom_dict['ishalogen']], cutoff) # skip empty values if len(a) > 0 and len(h) > 0: angle1 = angle(h['coords'][:, np.newaxis, :], a['coords'][:, np.newaxis, :], a['neighbors']) angle2 = angle(a['coords'][:, np.newaxis, :], h['coords'][:, np.newaxis, :], h['neighbors']) a_neighbors_num = np.sum(~np.isnan(a['neighbors'][:, :, 0]), axis=-1)[:, np.newaxis] h_neighbors_num = np.sum(~np.isnan(h['neighbors'][:, :, 0]), axis=-1)[:, np.newaxis] strict = (((np.nan_to_num(angle1) > (base_angle_acceptor / a_neighbors_num - tolerance)) | np.isnan(angle1)) & ((np.nan_to_num(angle2) > (base_angle_halogen / h_neighbors_num - tolerance)) | np.isnan(angle2))).all(axis=-1) return a, h, strict else: return a, h, np.array([], dtype=bool)
def pi_stacking(mol1, mol2, cutoff=5, tolerance=30): """Returns pairs of rings, which meet pi stacking criteria Parameters ---------- mol1, mol2 : oddt.toolkit.Molecule object Molecules to compute ring pairs cutoff : float, (default=5) Distance cutoff for Pi-stacking pairs tolerance : int, (default=30) Range (+/- tolerance) from perfect direction (parallel or perpendicular) in which pi-stackings are considered as strict. Returns ------- r1, r2 : ring_dict-type numpy array Aligned arrays of rings forming pi-stacking strict_parallel : numpy array, dtype=bool Boolean array align with ring pairs, informing whether rings form 'strict' parallel pi-stacking. If false, only distance cutoff is met, therefore the stacking is 'crude'. strict_perpendicular : numpy array, dtype=bool Boolean array align with ring pairs, informing whether rings form 'strict' perpendicular pi-stacking (T-shaped, T-face, etc.). If false, only distance cutoff is met, therefore the stacking is 'crude'. """ r1, r2 = close_contacts(mol1.ring_dict, mol2.ring_dict, cutoff, x_column='centroid', y_column='centroid') if len(r1) > 0 and len(r2) > 0: angle1 = angle_2v(r1['vector'], r2['vector']) angle2 = angle(r1['vector'] + r1['centroid'], r1['centroid'], r2['centroid']) angle3 = angle(r2['vector'] + r2['centroid'], r2['centroid'], r1['centroid']) strict_parallel = (((angle1 > 180 - tolerance) | (angle1 < tolerance)) & ((angle2 > 180 - tolerance) | (angle2 < tolerance) | (angle3 > 180 - tolerance) | (angle3 < tolerance))) strict_perpendicular = ( (angle1 > 90 - tolerance) & (angle1 < 90 + tolerance) & (((angle2 > 180 - tolerance) | (angle2 < tolerance)) & ((angle3 > 90 - tolerance) | (angle3 < 90 + tolerance)) | ((angle2 > 90 - tolerance) | (angle2 < 90 + tolerance)) & ((angle3 > 180 - tolerance) | (angle3 < tolerance)))) return r1, r2, strict_parallel, strict_perpendicular else: return r1, r2, np.array([], dtype=bool), np.array([], dtype=bool)
def hbond_acceptor_donor(mol1, mol2, cutoff=3.5, base_angle=120, tolerance=30): """Returns pairs of acceptor-donor atoms, which meet H-bond criteria Parameters ---------- mol1, mol2 : oddt.toolkit.Molecule object Molecules to compute H-bond acceptor and H-bond donor pairs cutoff : float, (default=3.5) Distance cutoff for A-D pairs base_angle : int, (default=120) Base angle determining allowed direction of hydrogen bond formation, which is devided by the number of neighbors of acceptor atom to establish final directional angle tolerance : int, (default=30) Range (+/- tolerance) from perfect direction (base_angle/n_neighbors) in which H-bonds are considered as strict. Returns ------- a, d : atom_dict-type numpy array Aligned arrays of atoms forming H-bond, firstly acceptors, secondly donors. strict : numpy array, dtype=bool Boolean array align with atom pairs, informing whether atoms form 'strict' H-bond (pass all angular cutoffs). If false, only distance cutoff is met, therefore the bond is 'crude'. """ a, d = close_contacts(mol1.atom_dict[mol1.atom_dict['isacceptor']], mol2.atom_dict[mol2.atom_dict['isdonor']], cutoff) # skip empty values if len(a) > 0 and len(d) > 0: angle1 = angle(d['coords'][:, np.newaxis, :], a['coords'][:, np.newaxis, :], a['neighbors']) a_neighbors_num = np.sum(~np.isnan(a['neighbors'][:, :, 0]), axis=-1)[:, np.newaxis] angle2 = angle(a['coords'][:, np.newaxis, :], d['coords'][:, np.newaxis, :], d['neighbors']) d_neighbors_num = np.sum(~np.isnan(d['neighbors'][:, :, 0]), axis=-1)[:, np.newaxis] strict = (( (np.nan_to_num(angle1) > (base_angle / a_neighbors_num - tolerance)) | np.isnan(angle1)) & ((np.nan_to_num(angle2) > (base_angle / d_neighbors_num - tolerance)) | np.isnan(angle2))).all(axis=-1) return a, d, strict else: return a, d, np.array([], dtype=bool)
def hbond_acceptor_donor(mol1, mol2, cutoff=3.5, base_angle=120, tolerance=30): """Returns pairs of acceptor-donor atoms, which meet H-bond criteria Parameters ---------- mol1, mol2 : oddt.toolkit.Molecule object Molecules to compute H-bond acceptor and H-bond donor pairs cutoff : float, (default=3.5) Distance cutoff for A-D pairs base_angle : int, (default=120) Base angle determining allowed direction of hydrogen bond formation, which is devided by the number of neighbors of acceptor atom to establish final directional angle tolerance : int, (default=30) Range (+/- tolerance) from perfect direction (base_angle/n_neighbors) in which H-bonds are considered as strict. Returns ------- a, d : atom_dict-type numpy array Aligned arrays of atoms forming H-bond, firstly acceptors, secondly donors. strict : numpy array, dtype=bool Boolean array align with atom pairs, informing whether atoms form 'strict' H-bond (pass all angular cutoffs). If false, only distance cutoff is met, therefore the bond is 'crude'. """ a, d = close_contacts(mol1.atom_dict[mol1.atom_dict['isacceptor']], mol2.atom_dict[mol2.atom_dict['isdonor']], cutoff) # skip empty values if len(a) > 0 and len(d) > 0: angle1 = angle(d['coords'][:, np.newaxis, :], a['coords'][:, np.newaxis, :], a['neighbors']) a_neighbors_num = np.sum(~np.isnan(a['neighbors'][:, :, 0]), axis=-1)[:, np.newaxis] angle2 = angle(a['coords'][:, np.newaxis, :], d['coords'][:, np.newaxis, :], d['neighbors']) d_neighbors_num = np.sum(~np.isnan(d['neighbors'][:, :, 0]), axis=-1)[:, np.newaxis] strict = (((np.nan_to_num(angle1) > (base_angle / a_neighbors_num - tolerance)) | np.isnan(angle1)) & ((np.nan_to_num(angle2) > (base_angle / d_neighbors_num - tolerance)) | np.isnan(angle2))).all(axis=-1) return a, d, strict else: return a, d, np.array([], dtype=bool)
def hbond_acceptor_donor(mol1, mol2, cutoff=3.5, tolerance=30, donor_exact=False): """Returns pairs of acceptor-donor atoms, which meet H-bond criteria Parameters ---------- mol1, mol2 : oddt.toolkit.Molecule object Molecules to compute H-bond acceptor and H-bond donor pairs cutoff : float, (default=3.5) Distance cutoff for A-D pairs tolerance : int, (default=30) Range (+/- tolerance) from perfect direction defined by acceptor/donor hybridization in which H-bonds are considered as strict. donor_exact : bool Use exact protonation states for donors, i.e. require Hs on donor. By default ODDT implies some tautomeric structures as protonated, even if there is no H on specific atom. Returns ------- a, d : atom_dict-type numpy array Aligned arrays of atoms forming H-bond, firstly acceptors, secondly donors. strict : numpy array, dtype=bool Boolean array align with atom pairs, informing whether atoms form 'strict' H-bond (pass all angular cutoffs). If false, only distance cutoff is met, therefore the bond is 'crude'. """ donor_mask = mol2.atom_dict['isdonor'] if donor_exact: donor_mask = donor_mask & (mol2.atom_dict['numhs'] > 0) a, d = close_contacts(mol1.atom_dict[mol1.atom_dict['isacceptor']], mol2.atom_dict[donor_mask], cutoff) # skip empty values if len(a) > 0 and len(d) > 0: angle1 = angle(d['coords'][:, np.newaxis, :], a['coords'][:, np.newaxis, :], a['neighbors']) angle2 = angle(a['coords'][:, np.newaxis, :], d['coords'][:, np.newaxis, :], d['neighbors']) strict = (_check_angles(angle1, a['hybridization'], tolerance) & _check_angles(angle2, d['hybridization'], tolerance)) return a, d, strict else: return a, d, np.array([], dtype=bool)
def acceptor_metal(mol1, mol2, base_angle = 120, tolerance = 30, cutoff = 4): """Returns pairs of acceptor-metal atoms, which meet metal coordination criteria Note: This function is directional (mol1 holds acceptors, mol2 holds metals) Parameters ---------- mol1, mol2 : oddt.toolkit.Molecule object Molecules to compute acceptor and metal pairs cutoff : float, (default=4) Distance cutoff for A-M pairs base_angle : int, (default=120) Base angle determining allowed direction of metal coordination, which is devided by the number of neighbors of acceptor atom to establish final directional angle tolerance : int, (default=30) Range (+/- tolerance) from perfect direction (base_angle/n_neighbors) in metal coordination are considered as strict. Returns ------- a, d : atom_dict-type numpy array Aligned arrays of atoms forming metal coordination, firstly acceptors, secondly metals. strict : numpy array, dtype=bool Boolean array align with atom pairs, informing whether atoms form 'strict' metal coordination (pass all angular cutoffs). If false, only distance cutoff is met, therefore the interaction is 'crude'. """ a, m = close_contacts(mol1.atom_dict[mol1.atom_dict['isacceptor']], mol2.atom_dict[mol2.atom_dict['ismetal']], cutoff) #skip empty values if len(a) > 0 and len(m) > 0: angle1 = angle(m['coords'][:,np.newaxis,:],a['coords'][:,np.newaxis,:],a['neighbors']) a_neighbors_num = np.sum(~np.isnan(a['neighbors'][:,:,0]), axis=-1)[:,np.newaxis] strict = ((angle1>(base_angle/a_neighbors_num-tolerance)) | np.isnan(angle1)).all(axis=-1) return a, m, strict else: return a, m, np.array([], dtype=bool)
def pi_stacking(mol1, mol2, cutoff = 5, tolerance = 30): """Returns pairs of rings, which meet pi stacking criteria Parameters ---------- mol1, mol2 : oddt.toolkit.Molecule object Molecules to compute ring pairs cutoff : float, (default=5) Distance cutoff for Pi-stacking pairs tolerance : int, (default=30) Range (+/- tolerance) from perfect direction (parallel or perpendicular) in which pi-stackings are considered as strict. Returns ------- r1, r2 : ring_dict-type numpy array Aligned arrays of rings forming pi-stacking strict_parallel : numpy array, dtype=bool Boolean array align with ring pairs, informing whether rings form 'strict' parallel pi-stacking. If false, only distance cutoff is met, therefore the stacking is 'crude'. strict_perpendicular : numpy array, dtype=bool Boolean array align with ring pairs, informing whether rings form 'strict' perpendicular pi-stacking (T-shaped, T-face, etc.). If false, only distance cutoff is met, therefore the stacking is 'crude'. """ r1, r2 = close_contacts(mol1.ring_dict, mol2.ring_dict, cutoff, x_column = 'centroid', y_column = 'centroid') if len(r1) > 0 and len(r2) > 0: angle1 = angle_2v(r1['vector'],r2['vector']) angle2 = angle(r1['vector'] + r1['centroid'],r1['centroid'], r2['centroid']) strict_parallel = ((angle1 > 180 - tolerance) | (angle1 < tolerance)) & ((angle2 > 180 - tolerance) | (angle2 < tolerance)) strict_perpendicular = ((angle1 > 90 - tolerance) & (angle1 < 90 + tolerance)) & ((angle2 > 180 - tolerance) | (angle2 < tolerance)) return r1, r2, strict_parallel, strict_perpendicular else: return r1, r2, np.array([], dtype=bool), np.array([], dtype=bool)
def test_angles(): """Test spatial computations - angles""" # Angles assert_array_almost_equal(angle(np.array((1, 0, 0)), np.array((0, 0, 0)), np.array((0, 1, 0))), 90) assert_array_almost_equal(angle(np.array((1, 0, 0)), np.array((0, 0, 0)), np.array((1, 1, 0))), 45) # Check benzene ring angle mol = oddt.toolkit.readstring('smi', 'c1ccccc1') mol.make3D() assert_array_almost_equal(angle(mol.coords[0], mol.coords[1], mol.coords[2]), 120, decimal=1)
def test_angles(): """Test spatial computations - angles""" # Angles assert_array_almost_equal( angle(np.array((1, 0, 0)), np.array((0, 0, 0)), np.array((0, 1, 0))), 90) assert_array_almost_equal( angle(np.array((1, 0, 0)), np.array((0, 0, 0)), np.array((1, 1, 0))), 45) # Check benzene ring angle mol = oddt.toolkit.readstring('smi', 'c1ccccc1') mol.make3D() assert_array_almost_equal(angle(mol.coords[0], mol.coords[1], mol.coords[2]), 120, decimal=1)
def halogenbond_acceptor_halogen(mol1, mol2, tolerance=30, cutoff=4): """Returns pairs of acceptor-halogen atoms, which meet halogen bond criteria Parameters ---------- mol1, mol2 : oddt.toolkit.Molecule object Molecules to compute halogen bond acceptor and halogen pairs cutoff : float, (default=4) Distance cutoff for A-H pairs tolerance : int, (default=30) Range (+/- tolerance) from perfect direction defined by atoms hybridization in which halogen bonds are considered as strict. Returns ------- a, h : atom_dict-type numpy array Aligned arrays of atoms forming halogen bond, firstly acceptors, secondly halogens strict : numpy array, dtype=bool Boolean array align with atom pairs, informing whether atoms form 'strict' halogen bond (pass all angular cutoffs). If false, only distance cutoff is met, therefore the bond is 'crude'. """ a, h = close_contacts(mol1.atom_dict[mol1.atom_dict['isacceptor']], mol2.atom_dict[mol2.atom_dict['ishalogen']], cutoff) # skip empty values if len(a) > 0 and len(h) > 0: angle1 = angle(h['coords'][:, np.newaxis, :], a['coords'][:, np.newaxis, :], a['neighbors']) angle2 = angle(a['coords'][:, np.newaxis, :], h['coords'][:, np.newaxis, :], h['neighbors']) strict = (_check_angles(angle1, a['hybridization'], tolerance) & _check_angles(angle2, np.ones_like(h['hybridization']), tolerance)) return a, h, strict else: return a, h, np.array([], dtype=bool)
def acceptor_metal(mol1, mol2, tolerance=30, cutoff=4): """Returns pairs of acceptor-metal atoms, which meet metal coordination criteria Note: This function is directional (mol1 holds acceptors, mol2 holds metals) Parameters ---------- mol1, mol2 : oddt.toolkit.Molecule object Molecules to compute acceptor and metal pairs cutoff : float, (default=4) Distance cutoff for A-M pairs tolerance : int, (default=30) Range (+/- tolerance) from perfect direction defined by atoms hybridization in metal coordination are considered as strict. Returns ------- a, d : atom_dict-type numpy array Aligned arrays of atoms forming metal coordination, firstly acceptors, secondly metals. strict : numpy array, dtype=bool Boolean array align with atom pairs, informing whether atoms form 'strict' metal coordination (pass all angular cutoffs). If false, only distance cutoff is met, therefore the interaction is 'crude'. """ a, m = close_contacts(mol1.atom_dict[mol1.atom_dict['isacceptor']], mol2.atom_dict[mol2.atom_dict['ismetal']], cutoff) # skip empty values if len(a) > 0 and len(m) > 0: angle1 = angle(m['coords'][:, np.newaxis, :], a['coords'][:, np.newaxis, :], a['neighbors']) strict = _check_angles(angle1, a['hybridization'], tolerance) return a, m, strict else: return a, m, np.array([], dtype=bool)
def test_spatial(): """Test spatial computations""" # Angles assert_array_almost_equal(angle(np.array((1, 0, 0)), np.array((0, 0, 0)), np.array((0, 1, 0))), 90) assert_array_almost_equal(angle(np.array((1, 0, 0)), np.array((0, 0, 0)), np.array((1, 1, 0))), 45) mol = oddt.toolkit.readstring('smi', 'c1ccccc1') mol.make3D() # Check benzene ring angle assert_array_almost_equal(angle(mol.coords[0], mol.coords[1], mol.coords[2]), 120, decimal=1) # Dihedrals assert_array_almost_equal(dihedral(np.array((1, 0, 0)), np.array((0, 0, 0)), np.array((0, 1, 0)), np.array((1, 1, 0))), 0) assert_array_almost_equal(dihedral(np.array((1, 0, 0)), np.array((0, 0, 0)), np.array((0, 1, 0)), np.array((1, 1, 1))), -45) # Check benzene ring dihedral assert_array_almost_equal(dihedral(mol.coords[0], mol.coords[1], mol.coords[2], mol.coords[3]), 0, decimal=1) mol = oddt.toolkit.readstring('smi', 'c1ccccc1') mol.make3D() mol2 = mol.clone # Test rotation assert_almost_equal(mol2.coords, rotate(mol2.coords, np.pi, np.pi, np.pi)) # Rotate perpendicular to ring mol2.coords = rotate(mol2.coords, 0, 0, np.pi) # RMSD assert_almost_equal(rmsd(mol, mol2, method=None), 2.77, decimal=1) # Hungarian must be close to zero (RDKit is 0.3) assert_almost_equal(rmsd(mol, mol2, method='hungarian'), 0, decimal=0) # pick one molecule from docked poses mols = list(oddt.toolkit.readfile('sdf', os.path.join(test_data_dir, 'data/dude/xiap/actives_docked.sdf'))) mols = list(filter(lambda x: x.title == '312335', mols)) assert_array_almost_equal([rmsd(mols[0], mol) for mol in mols[1:]], [4.753552, 2.501487, 2.7941732, 1.1281863, 0.74440968, 1.6256877, 4.762476, 2.7167852, 2.5504358, 1.9303833, 2.6200771, 3.1741529, 3.225431, 4.7784939, 4.8035369, 7.8962774, 2.2385094, 4.8625236, 3.2036853]) assert_array_almost_equal([rmsd(mols[0], mol, method='hungarian') for mol in mols[1:]], [2.5984519, 1.7295024, 1.1268076, 1.0285776, 0.73529714, 1.4094033, 2.5195069, 1.7449125, 1.5116163, 1.7796179, 2.6064286, 3.1576841, 3.2135022, 3.1675091, 2.7001681, 5.1263351, 2.0836117, 3.542397, 3.1873631])