Beispiel #1
0

def f(u, t):
    return -a * u


I = 1
a = 2
T = 6
dt = float(sys.argv[1]) if len(sys.argv) >= 2 else 0.75
Nt = int(round(T / dt))
t_mesh = np.linspace(0, Nt * dt, Nt + 1)

solvers = [
    odespy.RK2(f),
    odespy.RK3(f),
    odespy.RK4(f),
    # BackwardEuler must use Newton solver to converge
    # (Picard is default and leads to divergence)
    odespy.BackwardEuler(f, nonlinear_solver='Newton')
]

legends = []
for solver in solvers:
    solver.set_initial_condition(I)
    u, t = solver.solve(t_mesh)

    plt.plot(t, u)
    plt.hold('on')
    legends.append(solver.__class__.__name__)
        k3 = func(z[i, :] + k2 * dt2, t + dt2)  # predictor step 3
        k4 = func(z[i, :] + k3 * dt, t + dt)  # predictor step 4
        z[i + 1, :] = z[i, :] + dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4
                                            )  # Corrector step

    return z


# Main program starts here
from numpy import linspace
T = 10  # end of simulation
N = 20  # no of time steps
time = linspace(0, T, N + 1)

solvers = []
solvers.append(odespy.RK3(f2))
solvers.append(odespy.RK4(f2))

legends = []

z0 = np.zeros(2)
z0[0] = 2.0

for i, solver in enumerate(solvers):
    solver.set_initial_condition(z0)
    z, t = solver.solve(time)
    plot(t, z[:, 1])
    legends.append(str(solver))

scheme_list = [euler, heun, rk4_own]
Beispiel #3
0
        plt.hold('on')

    plt.xlabel('Number of periods')
    plt.ylabel('Amplitude (absolute value)')
    plt.legend(loc='upper left')
    plt.savefig(file_name + '.png')
    plt.savefig(file_name + '.pdf')
    plt.show()


# Define different sets of experiments
solvers_CNB2 = [
    odespy.CrankNicolson(f, nonlinear_solver='Newton'),
    odespy.Backward2Step(f)
]
solvers_RK34 = [odespy.RK3(f), odespy.RK4(f)]
solvers_AB = [odespy.AdamsBashforth2(f), odespy.AdamsBashforth3(f)]

if __name__ == '__main__':
    # Default values
    timesteps_per_period = 30
    solver_collection = 'CNB2'
    num_periods = 100
    # Override from command line
    try:
        # Example: python vib_undamped_odespy.py 30 RK34 50
        timesteps_per_period = int(sys.argv[1])
        solver_collection = sys.argv[2]
        num_periods = int(sys.argv[3])
    except IndexError:
        pass  # default values are ok
Beispiel #4
0
def fblasius(y, x):
    """ODE-system for the Blasius-equation"""
    return [y[1],y[2], -y[0]*y[2]]

import odespy

solvers=[]
solvers.append(odespy.RK4(fblasius))
solvers.append(odespy.RK2(fblasius))
solvers.append(odespy.RK3(fblasius))

from numpy import linspace, exp
xmin = 0
xmax = 5.75

N = 150  # no x-values
xspan = linspace(xmin, xmax, N+1)

smin=0.1
smax=0.8

Ns=30
srange = linspace(smin,smax,Ns)

from matplotlib.pyplot import *
#change some default values to make plots more readable on the screen
LNWDT=5; FNT=25
matplotlib.rcParams['lines.linewidth'] = LNWDT; matplotlib.rcParams['font.size'] = FNT
figure()
legends=[]
linet=['r-',':','.','-.','--']
Beispiel #5
0
    odespy.AdamsBashforth2(problem),
    odespy.AdamsBashforth3(problem),
    odespy.AdamsBashforth4(problem),
    odespy.AdaptiveResidual(problem, solver='Euler'),
    odespy.Backward2Step(problem),
    odespy.BackwardEuler(problem),
    odespy.Dop853(problem, rtol=rtol, atol=atol),
    odespy.Dopri5(problem, rtol=rtol, atol=atol),
    odespy.Euler(problem),
    odespy.Heun(problem),
    odespy.Leapfrog(problem),
    odespy.LeapfrogFiltered(problem),
    odespy.MidpointImplicit(problem),
    odespy.MidpointIter(problem, max_iter=10, eps_iter=1E-7),
    odespy.RK2(problem),
    odespy.RK3(problem),
    odespy.RK4(problem),
    odespy.RKFehlberg(problem, rtol=rtol, atol=atol),
    odespy.SymPy_odefun(problem),
    odespy.ThetaRule(problem),
    odespy.Trapezoidal(problem),
    odespy.Vode(problem, rtol=rtol, atol=atol, adams_or_bdf=adams_or_bdf),
]

theta_exact = lambda t: problem.Theta * numpy.cos(sqrt(problem.c) * t)

import sys, time
try:
    num_periods = int(sys.argv[1])
except IndexError:
    num_periods = 30  # default