def test(): with UnitTimer(12): for _ in range(12): for i, j in group((x0, x1, x2)): # print(i.shape, j.shape) pass
from odin.search import (diagonal_beam_search, diagonal_bruteforce_search, diagonal_greedy_search, diagonal_hillclimb_search) from odin.utils import UnitTimer os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' tf.random.set_seed(8) np.random.seed(8) shape = (8, 8) mat = np.random.randint(0, 88, size=shape) print(mat) with UnitTimer(): ids = diagonal_beam_search(mat) print(ids) print(mat[:, ids]) print(np.sum(np.diag(mat[:, ids]))) with UnitTimer(): ids = diagonal_hillclimb_search(mat) print(ids) print(mat[:, ids]) print(np.sum(np.diag(mat[:, ids]))) with UnitTimer(): ids = diagonal_greedy_search(mat) print(ids) print(mat[:, ids])
X_valid, y_mRNA_valid, y_prot_valid, y_bin_valid, y_prob_valid = data[ valid], y_mRNA[valid], y_prot[valid], y_bin[valid], y_prob[valid] X_test, y_mRNA_test, y_prot_test, y_bin_test, y_prob_test = data[test], y_mRNA[ test], y_prot[test], y_bin[test], y_prob[test] print(ctext("Train:", 'cyan'), X_train.shape, y_mRNA_train.shape, y_prot_train.shape, y_bin_train.shape, y_prob_train.shape) print(ctext("Valid:", 'cyan'), X_valid.shape, y_mRNA_valid.shape, y_prot_valid.shape, y_bin_valid.shape, y_prob_valid.shape) print(ctext("Test:", 'cyan'), X_test.shape, y_mRNA_test.shape, y_prot_test.shape, y_bin_test.shape, y_prob_test.shape) # =========================================================================== # Evaluation # =========================================================================== random_state = get_rng().randint(0, 10e8) # ====== create transformer ====== # with UnitTimer(name="Fit PCA"): pca = PCA(n_components=NUM_COMPONENTS, random_state=random_state) pca.fit(X_train) with UnitTimer(name="Fit PPCA"): ppca = PPCA(n_components=NUM_COMPONENTS, verbose=True, random_state=random_state) ppca.fit(X_train) with UnitTimer(name="Fit S-PPCA"): sppca = SupervisedPPCA(n_components=NUM_COMPONENTS, verbose=True, extractor='supervised', random_state=random_state) X_, y_ = [], []
T.sum(const2.T**3)) outputs, update = theano.scan(step_non, sequences=theano.shared( np.arange(12 * 12 * 12 * 8 * 8).reshape( 12 * 12 * 12, 8, 8)), outputs_info=theano.shared(np.ones((8, 8))), strict=False) f_non = theano.function(inputs=[], outputs=outputs, allow_input_downcast=True) time.sleep(0.5) for i in range(3): print('Non-strict scan:') with UnitTimer(8): for i in range(8): f_non() print('Strict scan:') with UnitTimer(8): for i in range(8): f_strict() # Non - strict scan: # Time: 0.064988 (sec) # Strict scan: # Time: 0.058314 (sec) # Non - strict scan: # Time: 0.059891 (sec) # Strict scan: