Beispiel #1
0
def test_matrix_op_call(matrix):
    """Validate result from calls to matrix operators against Numpy."""
    dense_matrix = matrix
    sparse_matrix = scipy.sparse.coo_matrix(dense_matrix)

    # Default 1d case
    dmat_op = MatrixOperator(dense_matrix)
    smat_op = MatrixOperator(sparse_matrix)
    xarr, x = noise_elements(dmat_op.domain)

    true_result = dense_matrix.dot(xarr)
    assert all_almost_equal(dmat_op(x), true_result)
    assert all_almost_equal(smat_op(x), true_result)
    out = dmat_op.range.element()
    dmat_op(x, out=out)
    assert all_almost_equal(out, true_result)
    smat_op(x, out=out)
    assert all_almost_equal(out, true_result)

    # Multi-dimensional case
    domain = odl.rn((2, 2, 4))
    mat_op = MatrixOperator(dense_matrix, domain, axis=2)
    xarr, x = noise_elements(mat_op.domain)
    true_result = np.moveaxis(np.tensordot(dense_matrix, xarr, (1, 2)), 0, 2)
    assert all_almost_equal(mat_op(x), true_result)
    out = mat_op.range.element()
    mat_op(x, out=out)
    assert all_almost_equal(out, true_result)
Beispiel #2
0
def test_mat_op_adjoint(fn):
    # Square cases
    sparse_mat = _sparse_matrix(fn)
    dense_mat = _dense_matrix(fn)

    op_sparse = MatrixOperator(sparse_mat, fn, fn)
    op_dense = MatrixOperator(dense_mat, fn, fn)

    # Just test if it runs, nothing interesting to test here
    op_sparse.adjoint
    op_dense.adjoint

    # Rectangular case
    rect_mat = 2 * np.eye(2, 3)
    r2, r3 = odl.rn(2), odl.rn(3)
    c2 = odl.cn(2)

    op = MatrixOperator(rect_mat, r3, r2)
    op_adj = op.adjoint
    assert op_adj.domain == op.range
    assert op_adj.range == op.domain
    assert np.array_equal(op_adj.matrix, op.matrix.conj().T)
    assert np.array_equal(op_adj.adjoint.matrix, op.matrix)

    # The operator Rn -> Cn has no adjoint
    op_noadj = MatrixOperator(rect_mat, r3, c2)
    with pytest.raises(NotImplementedError):
        op_noadj.adjoint
Beispiel #3
0
def test_matrix_op_adjoint(matrix):
    """Test if the adjoint of matrix operators is correct."""
    dense_matrix = matrix
    sparse_matrix = scipy.sparse.coo_matrix(dense_matrix)

    tol = 2 * matrix.size * np.finfo(matrix.dtype).resolution

    # Default 1d case
    dmat_op = MatrixOperator(dense_matrix)
    smat_op = MatrixOperator(sparse_matrix)
    x = noise_element(dmat_op.domain)
    y = noise_element(dmat_op.range)

    inner_ran = dmat_op(x).inner(y)
    inner_dom = x.inner(dmat_op.adjoint(y))
    assert inner_ran == pytest.approx(inner_dom, rel=tol, abs=tol)
    inner_ran = smat_op(x).inner(y)
    inner_dom = x.inner(smat_op.adjoint(y))
    assert inner_ran == pytest.approx(inner_dom, rel=tol, abs=tol)

    # Multi-dimensional case
    domain = odl.tensor_space((2, 2, 4), matrix.dtype)
    mat_op = MatrixOperator(dense_matrix, domain, axis=2)
    x = noise_element(mat_op.domain)
    y = noise_element(mat_op.range)
    inner_ran = mat_op(x).inner(y)
    inner_dom = x.inner(mat_op.adjoint(y))
    assert inner_ran == pytest.approx(inner_dom, rel=tol, abs=tol)
Beispiel #4
0
def test_mat_op_call(fn):
    # Square cases
    sparse_mat = _sparse_matrix(fn)
    dense_mat = _dense_matrix(fn)
    xarr, x = noise_elements(fn)

    op_sparse = MatrixOperator(sparse_mat, fn, fn)
    op_dense = MatrixOperator(dense_mat, fn, fn)

    yarr_sparse = sparse_mat.dot(xarr)
    yarr_dense = dense_mat.dot(xarr)

    # Out-of-place
    y = op_sparse(x)
    assert all_almost_equal(y, yarr_sparse)

    y = op_dense(x)
    assert all_almost_equal(y, yarr_dense)

    # In-place
    y = fn.element()
    op_sparse(x, out=y)
    assert all_almost_equal(y, yarr_sparse)

    y = fn.element()
    op_dense(x, out=y)
    assert all_almost_equal(y, yarr_dense)

    # Rectangular case
    rect_mat = 2 * np.eye(2, 3)
    r2, r3 = odl.rn(2), odl.rn(3)

    op = MatrixOperator(rect_mat, r3, r2)
    xarr = np.arange(3, dtype=float)
    x = r3.element(xarr)

    yarr = rect_mat.dot(xarr)

    # Out-of-place
    y = op(x)
    assert all_almost_equal(y, yarr)

    # In-place
    y = r2.element()
    op(x, out=y)
    assert all_almost_equal(y, yarr)
Beispiel #5
0
def test_mat_op_inverse(fn):
    # Sparse case
    sparse_mat = _sparse_matrix(fn)
    op_sparse = MatrixOperator(sparse_mat, fn, fn)

    op_sparse_inv = op_sparse.inverse
    assert op_sparse_inv.domain == op_sparse.range
    assert op_sparse_inv.range == op_sparse.domain
    assert all_almost_equal(op_sparse_inv.matrix,
                            np.linalg.inv(op_sparse.matrix.todense()))
    assert all_almost_equal(op_sparse_inv.inverse.matrix,
                            op_sparse.matrix.todense())

    # Test application
    x = noise_element(fn)
    assert all_almost_equal(x, op_sparse.inverse(op_sparse(x)))

    # Dense case
    dense_mat = _dense_matrix(fn)
    op_dense = MatrixOperator(dense_mat, fn, fn)
    op_dense_inv = op_dense.inverse
    assert op_dense_inv.domain == op_dense.range
    assert op_dense_inv.range == op_dense.domain
    assert all_almost_equal(op_dense_inv.matrix,
                            np.linalg.inv(op_dense.matrix))
    assert all_almost_equal(op_dense_inv.inverse.matrix, op_dense.matrix)

    # Test application
    x = noise_element(fn)
    assert all_almost_equal(x, op_dense.inverse(op_dense(x)))
Beispiel #6
0
def test_matrix_op_call_explicit():
    """Validate result from call to matrix op against explicit calculation."""
    mat = np.ones((3, 2))
    xarr = np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]], dtype=float)

    # Multiplication along `axis` with `mat` is the same as summation
    # along `axis` and stacking 3 times along the same axis
    for axis in range(3):
        mat_op = MatrixOperator(mat, domain=odl.rn(xarr.shape), axis=axis)
        result = mat_op(xarr)
        true_result = np.repeat(np.sum(xarr, axis=axis, keepdims=True),
                                repeats=3,
                                axis=axis)
        assert result.shape == true_result.shape
        assert np.allclose(result, true_result)
Beispiel #7
0
def test_matrix_op_inverse():
    """Test if the inverse of matrix operators is correct."""
    dense_matrix = np.ones((3, 3)) + 4 * np.eye(3)  # invertible
    sparse_matrix = scipy.sparse.coo_matrix(dense_matrix)

    # Default 1d case
    dmat_op = MatrixOperator(dense_matrix)
    smat_op = MatrixOperator(sparse_matrix)
    x = noise_element(dmat_op.domain)
    md_x = dmat_op(x)
    mdinv_md_x = dmat_op.inverse(md_x)
    assert all_almost_equal(x, mdinv_md_x)
    ms_x = smat_op(x)
    msinv_ms_x = smat_op.inverse(ms_x)
    assert all_almost_equal(x, msinv_ms_x)

    # Multi-dimensional case
    domain = odl.tensor_space((2, 2, 3), dense_matrix.dtype)
    mat_op = MatrixOperator(dense_matrix, domain, axis=2)
    x = noise_element(mat_op.domain)
    m_x = mat_op(x)
    minv_m_x = mat_op.inverse(m_x)
    assert all_almost_equal(x, minv_m_x)
Beispiel #8
0
def test_mat_op_init_and_basic_properties():
    """Test initialization and basic properties of MatrixOperator."""
    # Test default domain and range
    r2 = odl.rn(2)
    op_real = MatrixOperator([[1.0, 2], [-1, 0.5]])

    assert op_real.domain == r2
    assert op_real.range == r2

    c2 = odl.cn(2)
    op_complex = MatrixOperator([[1.0, 2 + 1j], [-1 - 1j, 0.5]])

    assert op_complex.domain == c2
    assert op_complex.range == c2

    int2 = odl.fn(2, dtype=int)
    op_int = MatrixOperator([[1, 2], [-1, 0]])

    assert op_int.domain == int2
    assert op_int.range == int2

    # Rectangular
    rect_mat = 2 * np.eye(2, 3)
    r3 = odl.rn(3)

    op = MatrixOperator(rect_mat)
    assert op.domain == r3
    assert op.range == r2

    MatrixOperator(rect_mat, domain=r3, range=r2)

    with pytest.raises(ValueError):
        MatrixOperator(rect_mat, domain=r2, range=r2)

    with pytest.raises(ValueError):
        MatrixOperator(rect_mat, domain=r3, range=r3)

    with pytest.raises(ValueError):
        MatrixOperator(rect_mat, domain=r2, range=r3)

    # Rn to Cn okay
    MatrixOperator(rect_mat, domain=r3, range=odl.cn(2))

    # Cn to Rn not okay (no safe cast)
    with pytest.raises(TypeError):
        MatrixOperator(rect_mat, domain=odl.cn(3), range=r2)

    # Complex matrix between real spaces not okay
    rect_complex_mat = rect_mat + 1j
    with pytest.raises(TypeError):
        MatrixOperator(rect_complex_mat, domain=r3, range=r2)

    # Init with array-like structure (including numpy.matrix)
    op = MatrixOperator(rect_mat, domain=r3, range=r2)
    assert isinstance(op.matrix, np.ndarray)

    op = MatrixOperator(np.asmatrix(rect_mat), domain=r3, range=r2)
    assert isinstance(op.matrix, np.ndarray)

    op = MatrixOperator(rect_mat.tolist(), domain=r3, range=r2)
    assert isinstance(op.matrix, np.ndarray)
    assert not op.matrix_issparse

    sparse_mat = _sparse_matrix(odl.rn(5))
    op = MatrixOperator(sparse_mat, domain=odl.rn(5), range=odl.rn(5))
    assert isinstance(op.matrix, scipy.sparse.spmatrix)
    assert op.matrix_issparse

    # Init with uniform_discr space (subclass of FnBase)
    dom = odl.uniform_discr(0, 1, 3)
    ran = odl.uniform_discr(0, 1, 2)
    MatrixOperator(rect_mat, domain=dom, range=ran)
Beispiel #9
0
def test_matrix_op_init(matrix):
    """Test initialization and properties of matrix operators."""
    dense_matrix = matrix
    sparse_matrix = scipy.sparse.coo_matrix(dense_matrix)

    # Just check if the code runs
    MatrixOperator(dense_matrix)
    MatrixOperator(sparse_matrix)

    # Test default domain and range
    mat_op = MatrixOperator(dense_matrix)
    assert mat_op.domain == odl.tensor_space(4, matrix.dtype)
    assert mat_op.range == odl.tensor_space(3, matrix.dtype)
    assert np.all(mat_op.matrix == dense_matrix)

    sparse_matrix = scipy.sparse.coo_matrix(dense_matrix)
    mat_op = MatrixOperator(sparse_matrix)
    assert mat_op.domain == odl.tensor_space(4, matrix.dtype)
    assert mat_op.range == odl.tensor_space(3, matrix.dtype)
    assert (mat_op.matrix != sparse_matrix).getnnz() == 0

    # Explicit domain and range
    dom = odl.tensor_space(4, matrix.dtype)
    ran = odl.tensor_space(3, matrix.dtype)

    mat_op = MatrixOperator(dense_matrix, domain=dom, range=ran)
    assert mat_op.domain == dom
    assert mat_op.range == ran

    mat_op = MatrixOperator(sparse_matrix, domain=dom, range=ran)
    assert mat_op.domain == dom
    assert mat_op.range == ran

    # Bad 1d sizes
    with pytest.raises(ValueError):
        MatrixOperator(dense_matrix, domain=odl.cn(4), range=odl.cn(4))
    with pytest.raises(ValueError):
        MatrixOperator(dense_matrix, range=odl.cn(4))
    # Invalid range dtype
    with pytest.raises(ValueError):
        MatrixOperator(dense_matrix.astype(complex), range=odl.rn(4))

    # Data type promotion
    # real space, complex matrix -> complex space
    dom = odl.rn(4)
    mat_op = MatrixOperator(dense_matrix.astype(complex), domain=dom)
    assert mat_op.domain == dom
    assert mat_op.range == odl.cn(3)

    # complex space, real matrix -> complex space
    dom = odl.cn(4)
    mat_op = MatrixOperator(dense_matrix.real, domain=dom)
    assert mat_op.domain == dom
    assert mat_op.range == odl.cn(3)

    # Multi-dimensional spaces
    dom = odl.tensor_space((6, 5, 4), matrix.dtype)
    ran = odl.tensor_space((6, 5, 3), matrix.dtype)
    mat_op = MatrixOperator(dense_matrix, domain=dom, axis=2)
    assert mat_op.range == ran
    mat_op = MatrixOperator(dense_matrix, domain=dom, range=ran, axis=2)
    assert mat_op.range == ran

    with pytest.raises(ValueError):
        bad_dom = odl.tensor_space((6, 6, 6), matrix.dtype)  # wrong shape
        MatrixOperator(dense_matrix, domain=bad_dom)
    with pytest.raises(ValueError):
        dom = odl.tensor_space((6, 5, 4), matrix.dtype)
        bad_ran = odl.tensor_space((6, 6, 6), matrix.dtype)  # wrong shape
        MatrixOperator(dense_matrix, domain=dom, range=bad_ran)
    with pytest.raises(ValueError):
        MatrixOperator(dense_matrix, domain=dom, axis=1)
    with pytest.raises(ValueError):
        MatrixOperator(dense_matrix, domain=dom, axis=0)
    with pytest.raises(ValueError):
        bad_ran = odl.tensor_space((6, 3, 4), matrix.dtype)
        MatrixOperator(dense_matrix, domain=dom, range=bad_ran, axis=2)
    with pytest.raises(ValueError):
        bad_dom_for_sparse = odl.rn((6, 5, 4))
        MatrixOperator(sparse_matrix, domain=bad_dom_for_sparse, axis=2)

    # Init with uniform_discr space (subclass of TensorSpace)
    dom = odl.uniform_discr(0, 1, 4, dtype=dense_matrix.dtype)
    ran = odl.uniform_discr(0, 1, 3, dtype=dense_matrix.dtype)
    MatrixOperator(dense_matrix, domain=dom, range=ran)

    # Make sure this runs and returns something string-like
    assert str(mat_op) > ''
    assert repr(mat_op) > ''