Beispiel #1
0
    def _reconstruct(self, observation, out):
        observation = self.observation_space.element(observation)
        out[:] = self.x0
        gradient = Gradient(self.op.domain)
        L = [self.op, gradient]
        f = ZeroFunctional(self.op.domain)
        l2_norm = 0.5 * L2NormSquared(self.op.range).translated(observation)
        l12_norm = self.lam * GroupL1Norm(gradient.range)
        g = [l2_norm, l12_norm]
        op_norm = power_method_opnorm(self.op, maxiter=20)
        gradient_norm = power_method_opnorm(gradient, maxiter=20)
        sigma_ray_trafo = 45.0 / op_norm**2
        sigma_gradient = 45.0 / gradient_norm**2
        sigma = [sigma_ray_trafo, sigma_gradient]
        h = ZeroFunctional(self.op.domain)
        forward_backward_pd(out,
                            f,
                            g,
                            L,
                            h,
                            self.tau,
                            sigma,
                            self.niter,
                            callback=self.callback)

        return out
Beispiel #2
0
 def _reconstruct(self, observation, out):
     observation = self.observation_space.element(observation)
     out_ = out
     if out not in self.reco_space:
         out_ = self.reco_space.zero()
     out_[:] = self.x0
     gradient = Gradient(self.op.domain)
     L = BroadcastOperator(self.op, gradient)
     f = ZeroFunctional(self.op.domain)
     l2_norm = L2NormSquared(self.op.range).translated(observation)
     l1_norm = self.lam * L1Norm(gradient.range)
     g = SeparableSum(l2_norm, l1_norm)
     op_norm = 1.1 * power_method_opnorm(L, maxiter=20)
     sigma = self.tau * op_norm**2
     admm.admm_linearized(out_,
                          f,
                          g,
                          L,
                          self.tau,
                          sigma,
                          self.niter,
                          callback=self.callback)
     if out not in self.reco_space:
         out[:] = out_
     return out
Beispiel #3
0
 def _reconstruct(self, observation, out):
     # The proximal_gradient and accelerated_proximal_gradient methods
     # from ODL have as input the function, which needs to be minimized
     # (and not the forward operator itself). Therefore, we calculate the
     # discrepancy ||Ax-b||_2^2. Note that the terms `f` and `g` are
     # switched in odl compared to the usage in the FISTA paper
     # (https://epubs.siam.org/doi/abs/10.1137/080716542).
     observation = self.observation_space.element(observation)
     out[:] = self.x0
     l2_norm_sq_trans = L2NormSquared(self.op.range).translated(observation)
     discrepancy = l2_norm_sq_trans * self.op
     if not self.accelerated:
         proximal_gradient_solvers.proximal_gradient(out,
                                                     self.reg,
                                                     discrepancy,
                                                     self.gamma,
                                                     self.niter,
                                                     callback=self.callback,
                                                     lam=self.lam)
     else:
         proximal_gradient_solvers.accelerated_proximal_gradient(
             out,
             self.reg,
             discrepancy,
             self.gamma,
             self.niter,
             callback=self.callback,
             lam=self.lam)
     return out
 def __call__(self, x):
     ret = 0
     xim = x[:self.N]
     for i in range(self.N):
         if self.alpha[i] != 0:
             xi = xim[i]
             res = self.residual(xi, i)
             ret += 0.5 * self.alpha[i] * L2NormSquared(res.space)(res)
     return ret
    def __call__(self, x):  # x is space time element im x vf
        ret = 0.
        xim = x[:self.N]
        xvf = x[self.N:]
        for i in range(self.N - 1):
            ximi = xim[i]
            ximii = xim[i + 1]
            xvfi = xvf[i]
            res = self.residual(ximii, ximi, xvfi)
            ret += 0.5 * L2NormSquared(res.space)(res)

        return self.alpha * ret
Beispiel #6
0
 def _reconstruct(self, observation, out):
     observation = self.observation_space.element(observation)
     out[:] = self.x0
     l2_norm = L2NormSquared(self.op.range)
     discrepancy = l2_norm * (self.op - observation)
     gradient = Gradient(self.op.domain)
     l1_norm = GroupL1Norm(gradient.range)
     smoothed_l1 = MoreauEnvelope(l1_norm, sigma=0.03)
     regularizer = smoothed_l1 * gradient
     f = discrepancy + self.lam * regularizer
     opnorm = power_method_opnorm(self.op)
     hessinv_estimate = ScalingOperator(self.op.domain, 1 / opnorm**2)
     newton.bfgs_method(f,
                        out,
                        maxiter=self.niter,
                        hessinv_estimate=hessinv_estimate,
                        callback=self.callback)
     return out
Beispiel #7
0
 def _reconstruct(self, observation, out):
     observation = self.observation_space.element(observation)
     out[:] = self.x0
     gradient = Gradient(self.op.domain)
     L = BroadcastOperator(self.op, gradient)
     f = ZeroFunctional(self.op.domain)
     l2_norm = L2NormSquared(self.op.range).translated(observation)
     l1_norm = self.lam * L1Norm(gradient.range)
     g = [l2_norm, l1_norm]
     tau, sigma = douglas_rachford.douglas_rachford_pd_stepsize(L)
     douglas_rachford.douglas_rachford_pd(out,
                                          f,
                                          g,
                                          L,
                                          self.niter,
                                          tau,
                                          sigma,
                                          callback=self.callback)
     return out
Beispiel #8
0
 def _reconstruct(self, observation, out):
     observation = self.observation_space.element(observation)
     out[:] = self.x0
     gradient = Gradient(self.op.domain)
     L = BroadcastOperator(self.op, gradient)
     f = ZeroFunctional(self.op.domain)
     l2_norm = L2NormSquared(self.op.range).translated(observation)
     l1_norm = self.lam * L1Norm(gradient.range)
     g = SeparableSum(l2_norm, l1_norm)
     tau, sigma = primal_dual_hybrid_gradient.pdhg_stepsize(L)
     primal_dual_hybrid_gradient.pdhg(out,
                                      f,
                                      g,
                                      L,
                                      self.niter,
                                      tau,
                                      sigma,
                                      callback=self.callback)
     return out
    def __init__(self, space, data, forward=None):
        self.space = space
        self.image_space = self.space[0]
        self.affine_space = self.space[1]
        self.rest_space = self.space[2]
        self.deformation_space = ProductSpace(self.affine_space,
                                              self.rest_space)
        self.data = data
        if forward is None:
            self.forward = IdentityOperator(self.image_space)
        else:
            self.forward = forward

        self.datafit = 0.5 * L2NormSquared(self.image_space).translated(
            self.data)
        self.embedding_affine_rest = ops.Embedding_Affine_Rest(
            self.deformation_space, self.image_space.tangent_bundle)
        self.embedding_affine = ops.Embedding_Affine(
            self.affine_space, self.image_space.tangent_bundle)

        super(DataFitL2DispAffRest, self).__init__(space=space,
                                                   linear=False,
                                                   grad_lipschitz=np.nan)
    def __init__(self, space, data, forward=None):
        self.space = space
        self.image_space = self.space[0]
        self.affine_space = self.space[1]
        self.data = data
        if forward is None:
            self.forward = IdentityOperator(self.image_space)
        else:
            self.forward = forward

        self.datafit = 0.5 * L2NormSquared(data.space).translated(self.data)

        if isinstance(self.image_space, odl.ProductSpace):
            tangent_bundle = self.image_space[0].tangent_bundle
        else:
            tangent_bundle = self.image_space.tangent_bundle

        self.embedding = ops.Embedding_Affine(self.affine_space,
                                              tangent_bundle)

        super(DataFitL2Disp, self).__init__(space=space,
                                            linear=False,
                                            grad_lipschitz=np.nan)
Beispiel #11
0
def minimization_alpha(dataset, reg, alpha, energy, nangles):

    alg_name = 'fbs'
    sinfo_type = 'tv'  # can be choose to be 'tv' or 'fbp'
    alg = '{}{}'.format(alg_name, reg)

    folder_data = './data/{}'.format(dataset)

    variables = {}

    with open('{}/parameters.txt'.format(folder_data)) as data_file:
        for line in data_file:
            name, value = line.split(" ")
            variables[name] = float(value)

    dom_width = variables["dom_width"]
    ndet = int(variables['ndet'])

    # Data and reconstruction size
    n = 512

    # Change these values if a different side information TV-reg is used
    if dataset == 'xcat':
        if sinfo_type == 'fbp':
            sinfo_name = 'fbp'
        elif sinfo_type == 'tv':
            sinfo_name = '0_1'
    elif dataset == 'bird':
        sinfo_name = '0_03'

    # Folder to save
    alpha_folder = './results/{}/{}/{}_angles/' \
                   '{}_alphas_{}'.format(dataset, alg_name, nangles, energy,
                                         reg)
    st = 1
    sett = {
        'fbsTV': {
            'outer_iter': 500,
            'inner_iter': 200,
            'tol': 1e-5
        },
        'fbsdTV': {
            'outer_iter': 500,
            'inner_iter': 200,
            'tol': 1e-5
        }
    }

    if sinfo_name == 'fbp':
        alpha_folder = '{}/fbp_side_info'.format(alpha_folder)

    if not os.path.exists(alpha_folder):
        os.makedirs(alpha_folder)

    niter, iter_save_x, iter_save_meas, iter_plot = {}, {}, {}, {}

    sett_keys = sett.keys()
    for a in sett_keys:
        niter[a] = sett[a]['outer_iter'] + 1
        iter_save_x[a] = range(0, niter[a], 1)
        iter_save_meas[a] = range(0, niter[a], 1)
        iter_plot[a] = range(0, niter[a], 5)
    # %%
    gt_fbp = {}
    gt_tv = {}
    if dataset == 'bird':
        # FBP
        gt_fbp[energy] = np.load('{}/{}_{}x{}_FBP_'
                                 'reference.npy'.format(
                                     folder_data, energy, n, n))

        # TV reconstruction
        ref_alphas = {'E0': 5e-3, 'E1': 2e-3, 'E2': 2e-3}
        ref_alpha = ref_alphas[energy]
        name = '{}_{}x{}_reference_reconstruction'.format(energy, n, n)
        name = name + '_alpha_' + str(ref_alpha).replace('.', '_')
        ref_dir = '{}/{}.npy'.format(folder_data, name)

        gt_tv[energy] = np.load(ref_dir)[0]

    elif dataset == 'xcat':
        # FBP
        gt_fbp[energy] = np.load('{}/{}_{}x{}_FBP_'
                                 'reference.npy'.format(
                                     folder_data, energy, n, n))
        gt_tv[energy] = gt_fbp[energy]

    U = odl.uniform_discr([-dom_width * 0.5, -dom_width * 0.5],
                          [dom_width * 0.5, dom_width * 0.5], (n, n))

    # %%
    # dTV parameters and side information
    eta = 1e-2
    eta_str = '{0:.1e}'.format(eta)
    eta_str = eta_str.replace('-', '_')
    if sinfo_name == 'fbp':
        sinfo = np.load('{}/sinfo_fbp_{}x{}'
                        '.npy'.format(folder_data, nangles, ndet))
    else:
        sinfo = np.load('{}/sinfo_TV_reconstruction_{}_d{}x{}_m{}'
                        '.npy'.format(folder_data, sinfo_name, nangles, ndet,
                                      n))
    D = misc.dTV(U, sinfo, eta)

    # Data
    data = {}
    name_data = np.load('{}/sinograms_{}x{}.npy'.format(
        folder_data, nangles, ndet))
    sinogram = name_data.item()

    # Operators and optimization parameters
    g = {}
    Lipschitz_cte = {}

    R = misc.forward_operator(dataset, 'sample', nangles)
    data[energy] = R.range.element(sinogram[energy])
    data_space = data[energy].space

    data_fit = 0.5 * L2NormSquared(data_space).translated(data[energy])
    g[energy] = data_fit * R
    Lipschitz_cte[energy] = R.norm(estimate=True)**2
    sigma_fbs = 1 / Lipschitz_cte[energy]

    # Run algorithm for different values of alpha

    alpha_str = '{0:.1e}'.format(alpha)
    alpha_str = alpha_str.replace('.', '_')
    alpha_name = 'alpha_{}'.format(alpha_str)

    name = '{}/{}.npy'.format(alpha_folder, alpha_name)
    # if os.path.isfile(name):
    #     os.system('say "Esta configuracion ya fue ejecutada"')
    #     return

    print('\n Solving reconstruction using alpha = {}\n'.format(alpha))

    fit_value = g[energy]

    prox_options = {}
    prox_options['niter'] = sett[alg]['inner_iter']
    prox_options['tol'] = sett[alg]['tol']
    prox_options['name'] = 'FGP'
    prox_options['warmstart'] = True
    prox_options['p'] = None
    alpha = alpha
    strong_convexity = 0

    if alg == 'fbsdTV':
        grad = D

    elif alg == 'fbsTV':
        grad = None

    Ru = TVnn(U,
              alpha=alpha,
              prox_options=prox_options,
              grad=grad,
              strong_convexity=strong_convexity)

    function_value = g[energy] + Ru

    def ssim_val(x, x_truth=gt_tv[energy]):
        return ssim(x, x_truth)

    ssfolder = '{}/{}'.format(alpha_folder, alpha_name)
    if not os.path.exists(ssfolder):
        os.makedirs(ssfolder)

    cb1 = odl.solvers.CallbackPrintIteration
    cb2 = odl.solvers.CallbackPrintTiming
    cb3 = odl.solvers.CallbackPrint
    cb3b = odl.solvers.CallbackPrint
    #    cb4 = misc.CallbackStoreA(alg=alg, iter_save_x=iter_save_x[alg],
    #                              iter_save_meas=iter_save_meas[alg],
    #                              iter_plot=None,
    #                              x_truth_tv=gt_tv[energy],
    #                              x_truth_fbp=gt_fbp[energy], ssfolder=ssfolder,
    #                              vmax=None, cmap=None)

    cb = (cb1(fmt='iter:{:4d}', step=st, end=', ')
          & cb2(fmt='time: {:5.2f} s', cumulative=True, step=st, end=', ')
          & cb3(function_value, fmt='f(x)={0:.4g}', step=st, end=', ')
          & cb3(fit_value, fmt='data_fit(x)={0:.4g}', step=st, end=', ')
          & cb3b(ssim_val, fmt='ssim={0:.4g}', step=st))

    x = U.one()
    misc.fbs(U,
             g[energy],
             Ru,
             sigma_fbs,
             g_grad=None,
             x=x,
             niter=niter[alg],
             callback=cb)

    solution = x
    name = '{}/{}.npy'.format(alpha_folder, alpha_name)
    np.save(name, solution)