def test_network_invocation_with_external_logit_output(self):
        """Validate that the logit outputs are correct."""
        sequence_length = 15
        input_width = 512
        test_network = span_labeling.SpanLabeling(input_width=input_width,
                                                  output='predictions')
        logit_network = span_labeling.SpanLabeling(input_width=input_width,
                                                   output='logits')
        logit_network.set_weights(test_network.get_weights())

        # Create a 3-dimensional input (the first dimension is implicit).
        sequence_data = tf.keras.Input(shape=(sequence_length, input_width),
                                       dtype=tf.float32)
        output = test_network(sequence_data)
        logit_output = logit_network(sequence_data)
        model = tf.keras.Model(sequence_data, output)
        logit_model = tf.keras.Model(sequence_data, logit_output)

        batch_size = 3
        input_data = 10 * np.random.random_sample(
            (batch_size, sequence_length, input_width))
        start_outputs, end_outputs = model.predict(input_data)
        start_logits, end_logits = logit_model.predict(input_data)

        # Ensure that the tensor shapes are correct.
        expected_output_shape = (batch_size, sequence_length)
        self.assertEqual(expected_output_shape, start_outputs.shape)
        self.assertEqual(expected_output_shape, end_outputs.shape)
        self.assertEqual(expected_output_shape, start_logits.shape)
        self.assertEqual(expected_output_shape, end_logits.shape)

        # Ensure that the logits, when softmaxed, create the outputs.
        input_tensor = tf.keras.Input(expected_output_shape[1:])
        output_tensor = tf.keras.layers.Activation(
            tf.nn.log_softmax)(input_tensor)
        softmax_model = tf.keras.Model(input_tensor, output_tensor)

        start_softmax = softmax_model.predict(start_logits)
        self.assertAllClose(start_outputs, start_softmax)
        end_softmax = softmax_model.predict(end_logits)
        self.assertAllClose(end_outputs, end_softmax)
    def test_network_creation(self):
        """Validate that the Keras object can be created."""
        sequence_length = 15
        input_width = 512
        test_network = span_labeling.SpanLabeling(input_width=input_width,
                                                  output='predictions')
        # Create a 3-dimensional input (the first dimension is implicit).
        sequence_data = tf.keras.Input(shape=(sequence_length, input_width),
                                       dtype=tf.float32)
        start_outputs, end_outputs = test_network(sequence_data)

        # Validate that the outputs are of the expected shape.
        expected_output_shape = [None, sequence_length]
        self.assertEqual(expected_output_shape, start_outputs.shape.as_list())
        self.assertEqual(expected_output_shape, end_outputs.shape.as_list())
    def test_serialize_deserialize(self):
        # Create a network object that sets all of its config options.
        network = span_labeling.SpanLabeling(input_width=128,
                                             activation='relu',
                                             initializer='zeros',
                                             output='predictions')

        # Create another network object from the first object's config.
        new_network = span_labeling.SpanLabeling.from_config(
            network.get_config())

        # Validate that the config can be forced to JSON.
        _ = new_network.to_json()

        # If the serialization was successful, the new config should match the old.
        self.assertAllEqual(network.get_config(), new_network.get_config())
    def test_network_invocation(self):
        """Validate that the Keras object can be invoked."""
        sequence_length = 15
        input_width = 512
        test_network = span_labeling.SpanLabeling(input_width=input_width)

        # Create a 3-dimensional input (the first dimension is implicit).
        sequence_data = tf.keras.Input(shape=(sequence_length, input_width),
                                       dtype=tf.float32)
        outputs = test_network(sequence_data)
        model = tf.keras.Model(sequence_data, outputs)

        # Invoke the network as part of a Model.
        batch_size = 3
        input_data = 10 * np.random.random_sample(
            (batch_size, sequence_length, input_width))
        start_outputs, end_outputs = model.predict(input_data)

        # Validate that the outputs are of the expected shape.
        expected_output_shape = (batch_size, sequence_length)
        self.assertEqual(expected_output_shape, start_outputs.shape)
        self.assertEqual(expected_output_shape, end_outputs.shape)
 def test_unknown_output_type_fails(self):
     with self.assertRaisesRegex(ValueError,
                                 'Unknown `output` value "bad".*'):
         _ = span_labeling.SpanLabeling(input_width=10, output='bad')