def train(strategy: tf.distribute.Strategy,
          model_fn: Callable,
          input_meta_data: Dict,
          train_input_fn: Callable,
          total_training_steps: int,
          steps_per_loop: int,
          optimizer: tf.keras.optimizers.Optimizer,
          learning_rate_fn: tf.keras.optimizers.schedules.LearningRateSchedule,
          eval_fn: Optional[Callable[
              [tf.keras.Model, int, tf.summary.SummaryWriter], Any]] = None,
          metric_fn: Optional[Callable[[], tf.keras.metrics.Metric]] = None,
          init_checkpoint: Optional[Text] = None,
          init_from_transformerxl: Optional[bool] = False,
          model_dir: Optional[Text] = None,
          save_steps: Optional[int] = None,
          run_eagerly: Optional[bool] = False):
    """Runs customized training.

  Args:
      strategy: Distribution strategy on which to run low level training loop.
      model_fn: The function returns a keras.Model.
      input_meta_data: A dictionary of params: `mem_len`, `lr_layer_decay_rate`,
        `n_layer`, `batch_size_per_core` and `d_model`.
      train_input_fn: Function returns a tf.data.Dataset used for training.
      total_training_steps: Number of steps to train in total.
      steps_per_loop: Number of steps per graph-mode loop. In order to reduce
        communication in eager context, training logs are printed every
        steps_per_loop.
      optimizer: The optimizer for model.
      learning_rate_fn: the learning rate schedule.
      eval_fn: A callback of evaluation function, that takes a keras.Model,
        current step and evaluation summary writer.
      metric_fn: A metrics function returns a Keras Metric object to record
        evaluation result using evaluation dataset or with training dataset
        after every epoch.
      init_checkpoint: Optional checkpoint to load to `sub_model` returned by
        `model_fn`.
      init_from_transformerxl: Whether to load to `transformerxl_model` of
        `model_fn`.
      model_dir: The directory of model (checkpoints, summaries).
      save_steps: The frequency to save checkpoints. Every save_steps, we save a
        model checkpoint. Model checkpoint will be saved and evaluation will be
        conducted if evaluation dataset is provided.
      run_eagerly: Whether to run training eagerly.

  Returns:
      Last training step logits if training happens, otherwise returns None.
  Raises:
    TypeError: if model directory is not specified.
  """
    required_arguments = [
        train_input_fn, total_training_steps, steps_per_loop, optimizer,
        learning_rate_fn, save_steps
    ]
    if [arg for arg in required_arguments if arg is None]:
        raise ValueError("`train_input_fn`, `total_training_steps`, "
                         "`steps_per_loop`, `optimizer`, `save_steps` and "
                         "`learning_rate_fn` are required parameters.")
    if not model_dir:
        raise TypeError("Model directory must be specified.")
    train_iterator = data_utils.get_input_iterator(train_input_fn, strategy)
    if not tf.io.gfile.exists(model_dir):
        tf.io.gfile.mkdir(model_dir)
    # Create summary writers
    summary_dir = os.path.join(model_dir, "summaries")
    if not tf.io.gfile.exists(summary_dir):
        tf.io.gfile.mkdir(summary_dir)
    train_summary_writer = None
    eval_summary_writer = None
    if eval_fn:
        eval_summary_writer = tf.summary.create_file_writer(
            os.path.join(summary_dir, "eval"))
    if steps_per_loop >= _MIN_SUMMARY_STEPS:
        # Only writes summary when the stats are collected sufficiently over
        # enough steps.
        train_summary_writer = tf.summary.create_file_writer(
            os.path.join(summary_dir, "train"))

    with strategy.scope():
        model = model_fn()

        if init_checkpoint:
            logging.info("restore from %s", init_checkpoint)
            if init_from_transformerxl:
                checkpoint = tf.train.Checkpoint(
                    transformer_xl=model.transformerxl_model)
            else:
                checkpoint = tf.train.Checkpoint(model=model)
            checkpoint.restore(init_checkpoint)

        model.optimizer = optimizer

        if not hasattr(model, "optimizer"):
            raise ValueError("User should set optimizer attribute to model.")

        train_loss_metric = tf.keras.metrics.Mean("training_loss",
                                                  dtype=tf.float32)
        train_metric = None
        if metric_fn:
            train_metric = metric_fn()

        def _replicated_step(inputs, mem=None):
            """Replicated training step."""

            inputs["mems"] = mem
            with tf.GradientTape() as tape:
                mem, logits = model(inputs, training=True)
                loss = model.losses
                train_loss_metric.update_state(loss)
                if train_metric:
                    train_metric.update_state(inputs["label_ids"], logits)
                scaled_loss = loss[0] * 1.0 / float(
                    strategy.num_replicas_in_sync)

            # Collects training variables.
            tvars = model.trainable_variables
            grads = tape.gradient(scaled_loss, tvars)
            clipped, _ = tf.clip_by_global_norm(grads, clip_norm=1.0)

            if input_meta_data["lr_layer_decay_rate"] != 1.0:
                n_layer = 0
                for i in range(len(clipped)):
                    m = re.search(r"model/transformer/layer_(\d+?)/",
                                  tvars[i].name)
                    if not m:
                        continue
                    n_layer = max(n_layer, int(m.group(1)) + 1)

                for i in range(len(clipped)):
                    for l in range(n_layer):
                        if "model/transformer/layer_{}/".format(
                                l) in tvars[i].name:
                            abs_rate = input_meta_data[
                                "lr_layer_decay_rate"]**(n_layer - 1 - l)
                            clipped[i] *= abs_rate
                            logging.info(
                                "Apply mult {:.4f} to layer-{} grad of {}".
                                format(abs_rate, l, tvars[i].name))
                            break

            optimizer.apply_gradients(zip(clipped, tvars))
            if input_meta_data["mem_len"] > 0:
                return mem

        def train_steps(iterator, steps):
            """Performs distributed training steps in a loop.

      Args:
        iterator: the distributed iterator of training datasets.
        steps: an tf.int32 integer tensor to specify number of steps to run
          inside host training loop.

      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.

      Returns:
        logits: logits computed.
      """
            if not isinstance(steps, tf.Tensor):
                raise ValueError(
                    "steps should be an Tensor. Python object may cause "
                    "retracing.")

            def cache_fn():
                """Initializes memory tensor used in XLNet pretraining."""
                mems = []
                if input_meta_data["mem_len"] > 0:
                    for _ in range(input_meta_data["n_layer"]):
                        zeros = tf.zeros([
                            input_meta_data["batch_size_per_core"],
                            input_meta_data["mem_len"],
                            input_meta_data["d_model"]
                        ],
                                         dtype=tf.float32)
                        mems.append(zeros)
                return mems

            if input_meta_data["mem_len"] > 0:
                mem = strategy.run(cache_fn)
                for _ in tf.range(steps):
                    mem = strategy.run(_replicated_step,
                                       args=(
                                           next(iterator),
                                           mem,
                                       ))
            else:
                for _ in tf.range(steps):
                    strategy.run(_replicated_step, args=(next(iterator), ))

        if not run_eagerly:
            train_steps = tf.function(train_steps)

        logging.info("Start training...")
        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
        if latest_checkpoint_file:
            logging.info(
                "Checkpoint file %s found and restoring from checkpoint",
                latest_checkpoint_file)
            checkpoint.restore(latest_checkpoint_file)
            logging.info("Loading from checkpoint file completed")

        current_step = optimizer.iterations.numpy()
        checkpoint_name = "xlnet_step_{step}.ckpt"

        while current_step < total_training_steps:
            train_loss_metric.reset_states()
            if train_metric:
                train_metric.reset_states()

            steps = model_training_utils.steps_to_run(current_step, save_steps,
                                                      steps_per_loop)
            train_steps(train_iterator,
                        tf.convert_to_tensor(steps, dtype=tf.int32))
            current_step += steps
            train_loss = _float_metric_value(train_loss_metric)
            log_stream = "Train step: %d/%d  /  lr = %.9f  /  loss = %.7f" % (
                current_step, total_training_steps,
                learning_rate_fn(current_step), train_loss)
            if train_metric:
                log_stream += "  /  %s = %f" % (
                    train_metric.name, _float_metric_value(train_metric))
            logging.info(log_stream)
            if train_summary_writer:
                with train_summary_writer.as_default():
                    tf.summary.scalar("learning_rate",
                                      learning_rate_fn(current_step),
                                      step=current_step)
                    tf.summary.scalar(train_loss_metric.name,
                                      train_loss,
                                      step=current_step)
                    if train_metric:
                        tf.summary.scalar(train_metric.name,
                                          _float_metric_value(train_metric),
                                          step=current_step)
                    train_summary_writer.flush()
            if model_dir and current_step % save_steps == 0:
                _save_checkpoint(checkpoint, model_dir,
                                 checkpoint_name.format(step=current_step))

            if eval_fn and current_step % save_steps == 0:

                logging.info("Running evaluation after step: %s.",
                             current_step)

                eval_fn(model, current_step, eval_summary_writer)
        if model_dir:
            _save_checkpoint(checkpoint, model_dir,
                             checkpoint_name.format(step=current_step))
        if eval_fn:
            logging.info(
                "Running final evaluation after training is complete.")
            eval_metric = eval_fn(model, current_step, eval_summary_writer)

        training_summary = {
            "total_training_steps": total_training_steps,
            "train_loss": _float_metric_value(train_loss_metric),
        }
        if train_metric:
            training_summary["last_train_metrics"] = _float_metric_value(
                train_metric)
        if eval_fn:
            # eval_metric is supposed to be a float.
            training_summary["eval_metrics"] = eval_metric

        model_training_utils.write_txt_summary(training_summary, summary_dir)

        return model
Beispiel #2
0
def run_evaluation(strategy,
                   test_input_fn,
                   eval_steps,
                   model,
                   step,
                   eval_summary_writer=None):
  """Run evaluation for classification task.

  Args:
    strategy: distribution strategy.
    test_input_fn: input function for evaluation data.
    eval_steps: total number of evaluation steps.
    model: keras model object.
    step: current train step.
    eval_summary_writer: summary writer used to record evaluation metrics.  As
      there are fake data samples in validation set, we use mask to get rid of
      them when calculating the accuracy. For the reason that there will be
      dynamic-shape tensor, we first collect logits, labels and masks from TPU
      and calculate the accuracy via numpy locally.

  Returns:
    A float metric, accuracy.
  """

  def _test_step_fn(inputs):
    """Replicated validation step."""

    inputs["mems"] = None
    _, logits = model(inputs, training=False)
    return logits, inputs["label_ids"], inputs["is_real_example"]

  @tf.function
  def _run_evaluation(test_iterator):
    """Runs validation steps."""
    logits, labels, masks = strategy.run(
        _test_step_fn, args=(next(test_iterator),))
    return logits, labels, masks

  test_iterator = data_utils.get_input_iterator(test_input_fn, strategy)
  correct = 0
  total = 0
  for _ in range(eval_steps):
    logits, labels, masks = _run_evaluation(test_iterator)
    logits = strategy.experimental_local_results(logits)
    labels = strategy.experimental_local_results(labels)
    masks = strategy.experimental_local_results(masks)
    merged_logits = []
    merged_labels = []
    merged_masks = []

    for i in range(strategy.num_replicas_in_sync):
      merged_logits.append(logits[i].numpy())
      merged_labels.append(labels[i].numpy())
      merged_masks.append(masks[i].numpy())
    merged_logits = np.vstack(np.array(merged_logits))
    merged_labels = np.hstack(np.array(merged_labels))
    merged_masks = np.hstack(np.array(merged_masks))
    real_index = np.where(np.equal(merged_masks, 1))
    correct += np.sum(
        np.equal(
            np.argmax(merged_logits[real_index], axis=-1),
            merged_labels[real_index]))
    total += np.shape(real_index)[-1]
  accuracy = float(correct) / float(total)
  logging.info("Train step: %d  /  acc = %d/%d = %f", step, correct, total,
               accuracy)
  if eval_summary_writer:
    with eval_summary_writer.as_default():
      tf.summary.scalar("eval_acc", float(correct) / float(total), step=step)
      eval_summary_writer.flush()
  return accuracy
def run_evaluation(strategy, test_input_fn, eval_examples, eval_features,
                   original_data, eval_steps, input_meta_data, model,
                   current_step, eval_summary_writer):
    """Run evaluation for SQUAD task.

  Args:
    strategy: distribution strategy.
    test_input_fn: input function for evaluation data.
    eval_examples: tf.Examples of the evaluation set.
    eval_features: Feature objects of the evaluation set.
    original_data: The original json data for the evaluation set.
    eval_steps: total number of evaluation steps.
    input_meta_data: input meta data.
    model: keras model object.
    current_step: current training step.
    eval_summary_writer: summary writer used to record evaluation metrics.

  Returns:
    A float metric, F1 score.
  """
    def _test_step_fn(inputs):
        """Replicated validation step."""

        inputs["mems"] = None
        res = model(inputs, training=False)
        return res, inputs["unique_ids"]

    @tf.function
    def _run_evaluation(test_iterator):
        """Runs validation steps."""
        res, unique_ids = strategy.run(_test_step_fn,
                                       args=(next(test_iterator), ))
        return res, unique_ids

    test_iterator = data_utils.get_input_iterator(test_input_fn, strategy)
    cur_results = []
    for _ in range(eval_steps):
        results, unique_ids = _run_evaluation(test_iterator)
        unique_ids = strategy.experimental_local_results(unique_ids)

        for result_key in results:
            results[result_key] = (strategy.experimental_local_results(
                results[result_key]))
        for core_i in range(strategy.num_replicas_in_sync):
            bsz = int(input_meta_data["test_batch_size"] /
                      strategy.num_replicas_in_sync)
            for j in range(bsz):
                result = {}
                for result_key in results:
                    result[result_key] = results[result_key][core_i].numpy()[j]
                result["unique_ids"] = unique_ids[core_i].numpy()[j]
                # We appended a fake example into dev set to make data size can be
                # divided by test_batch_size. Ignores this fake example during
                # evaluation.
                if result["unique_ids"] == 1000012047:
                    continue
                unique_id = int(result["unique_ids"])

                start_top_log_probs = ([
                    float(x) for x in result["start_top_log_probs"].flat
                ])
                start_top_index = [
                    int(x) for x in result["start_top_index"].flat
                ]
                end_top_log_probs = ([
                    float(x) for x in result["end_top_log_probs"].flat
                ])
                end_top_index = [int(x) for x in result["end_top_index"].flat]

                cls_logits = float(result["cls_logits"].flat[0])
                cur_results.append(
                    squad_utils.RawResult(
                        unique_id=unique_id,
                        start_top_log_probs=start_top_log_probs,
                        start_top_index=start_top_index,
                        end_top_log_probs=end_top_log_probs,
                        end_top_index=end_top_index,
                        cls_logits=cls_logits))
                if len(cur_results) % 1000 == 0:
                    logging.info("Processing example: %d", len(cur_results))

    output_prediction_file = os.path.join(input_meta_data["predict_dir"],
                                          "predictions.json")
    output_nbest_file = os.path.join(input_meta_data["predict_dir"],
                                     "nbest_predictions.json")
    output_null_log_odds_file = os.path.join(input_meta_data["predict_dir"],
                                             "null_odds.json")

    results = squad_utils.write_predictions(
        eval_examples, eval_features, cur_results,
        input_meta_data["n_best_size"], input_meta_data["max_answer_length"],
        output_prediction_file, output_nbest_file, output_null_log_odds_file,
        original_data, input_meta_data["start_n_top"],
        input_meta_data["end_n_top"])

    # Log current results.
    log_str = "Result | "
    for key, val in results.items():
        log_str += "{} {} | ".format(key, val)
    logging.info(log_str)
    with eval_summary_writer.as_default():
        tf.summary.scalar("best_f1", results["best_f1"], step=current_step)
        tf.summary.scalar("best_exact",
                          results["best_exact"],
                          step=current_step)
        eval_summary_writer.flush()
    return results["best_f1"]