Beispiel #1
0
    def encode(self, inputs, attention_bias):
        """Generate continuous representation for inputs.

        Args:
          inputs: int tensor with shape [batch_size, input_length].
          attention_bias: float tensor with shape [batch_size, 1, 1, input_length]

        Returns:
          float tensor with shape [batch_size, input_length, hidden_size]
        """
        with tf.name_scope("encode"):
            # Prepare inputs to the layer stack by adding positional encodings and
            # applying dropout.
            embedded_inputs = self.embedding_softmax_layer(inputs)
            inputs_padding = model_utils.get_padding(inputs)

            with tf.name_scope("add_pos_encoding"):
                length = tf.shape(embedded_inputs)[1]
                pos_encoding = model_utils.get_position_encoding(
                    length, self.params["hidden_size"])
                encoder_inputs = embedded_inputs + pos_encoding

            if self.train:
                encoder_inputs = tf.nn.dropout(
                    encoder_inputs,
                    1 - self.params["layer_postprocess_dropout"])

            return self.encoder_stack(encoder_inputs, attention_bias,
                                      inputs_padding)
    def _get_symbols_to_logits_fn(self, max_decode_length):
        """Returns a decoding function that calculates logits of the next tokens."""

        timing_signal = model_utils.get_position_encoding(
            max_decode_length + 1, self.params["hidden_size"])
        decoder_self_attention_bias = model_utils.get_decoder_self_attention_bias(
            max_decode_length)

        def symbols_to_logits_fn(ids, i, cache):
            """Generate logits for next potential IDs.

      Args:
        ids: Current decoded sequences.
          int tensor with shape [batch_size * beam_size, i + 1]
        i: Loop index
        cache: dictionary of values storing the encoder output, encoder-decoder
          attention bias, and previous decoder attention values.

      Returns:
        Tuple of
          (logits with shape [batch_size * beam_size, vocab_size],
           updated cache values)
      """
            # Set decoder input to the last generated IDs
            decoder_input = ids[:, -1:]

            # Preprocess decoder input by getting embeddings and adding timing signal.
            decoder_input = self.embedding_softmax_layer(decoder_input)
            decoder_input += timing_signal[i:i + 1]

            self_attention_bias = decoder_self_attention_bias[:, :,
                                                              i:i + 1, :i + 1]
            if self.params["use_full_attention"]:
                encoder_outputs = cache.get("encoder_outputs")
            else:
                encoder_outputs = cache.get("encoder_outputs")[:, i:i + 1]
            decoder_outputs = self.decoder_stack(
                decoder_input, encoder_outputs, self_attention_bias,
                cache.get("encoder_decoder_attention_bias"), cache)
            logits = self.embedding_softmax_layer.linear(decoder_outputs)
            logits = tf.squeeze(logits, axis=[1])
            return logits, cache

        return symbols_to_logits_fn
Beispiel #3
0
    def decode(self, targets, encoder_outputs, attention_bias):
        """Generate logits for each value in the target sequence.

        Args:
          targets: target values for the output sequence.
            int tensor with shape [batch_size, target_length]
          encoder_outputs: continuous representation of input sequence.
            float tensor with shape [batch_size, input_length, hidden_size]
          attention_bias: float tensor with shape [batch_size, 1, 1, input_length]

        Returns:
          float32 tensor with shape [batch_size, target_length, vocab_size]
        """
        with tf.name_scope("decode"):
            # Prepare inputs to decoder layers by shifting targets, adding positional
            # encoding and applying dropout.
            decoder_inputs = self.embedding_softmax_layer(targets)
            with tf.name_scope("shift_targets"):
                # Shift targets to the right, and remove the last element
                decoder_inputs = tf.pad(decoder_inputs,
                                        [[0, 0], [1, 0], [0, 0]])[:, :-1, :]
            with tf.name_scope("add_pos_encoding"):
                length = tf.shape(decoder_inputs)[1]
                decoder_inputs += model_utils.get_position_encoding(
                    length, self.params["hidden_size"])
            if self.train:
                decoder_inputs = tf.nn.dropout(
                    decoder_inputs,
                    1 - self.params["layer_postprocess_dropout"])

            # Run values
            decoder_self_attention_bias = model_utils.get_decoder_self_attention_bias(
                length)
            outputs = self.decoder_stack(decoder_inputs, encoder_outputs,
                                         decoder_self_attention_bias,
                                         attention_bias)
            logits = self.embedding_softmax_layer.linear(outputs)
            return logits