Beispiel #1
0
def test_euler_equation_solver():
    # Test SS.inner_loop function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', 'euler_eqn_solver_inputs.pkl'))
    (guesses, params) = input_tuple
    p = Specifications()
    (r, w, TR, factor, j, p.J, p.S, p.beta, p.sigma, p.ltilde, p.g_y,
     p.g_n_ss, tau_payroll, retire, p.mean_income_data, h_wealth,
     p_wealth, m_wealth, p.b_ellipse, p.upsilon, j, p.chi_b,
     p.chi_n, tau_bq, p.rho, lambdas, p.omega_SS, p.e,
     p.analytical_mtrs, etr_params, mtrx_params, mtry_params) = params
    p.eta = (p.omega_SS.reshape(p.S, 1) *
             p.lambdas.reshape(1, p.J)).reshape(1, p.S, p.J)
    p.tau_bq = np.ones(p.T + p.S) * 0.0
    p.tau_payroll = np.ones(p.T + p.S) * tau_payroll
    p.h_wealth = np.ones(p.T + p.S) * h_wealth
    p.p_wealth = np.ones(p.T + p.S) * p_wealth
    p.m_wealth = np.ones(p.T + p.S) * m_wealth
    p.retire = (np.ones(p.T + p.S) * retire).astype(int)
    p.etr_params = np.transpose(etr_params.reshape(
        p.S, 1, etr_params.shape[-1]), (1, 0, 2))
    p.mtrx_params = np.transpose(mtrx_params.reshape(
        p.S, 1, mtrx_params.shape[-1]), (1, 0, 2))
    p.mtry_params = np.transpose(mtry_params.reshape(
        p.S, 1, mtry_params.shape[-1]), (1, 0, 2))
    p.tax_func_type = 'DEP'
    p.lambdas = lambdas.reshape(p.J, 1)
    b_splus1 = np.array(guesses[:p.S]).reshape(p.S, 1) + 0.005
    BQ = aggregates.get_BQ(r, b_splus1, j, p, 'SS', False)
    bq = household.get_bq(BQ, j, p, 'SS')
    tr = household.get_tr(TR, j, p, 'SS')
    args = (r, w, bq, tr, factor, j, p)
    test_list = SS.euler_equation_solver(guesses, *args)

    expected_list = np.array([
        -3.62741663e+00, -6.30068841e+00, -6.76592886e+00,
        -6.97731223e+00, -7.05777777e+00, -6.57305440e+00,
        -7.11553046e+00, -7.30569622e+00, -7.45808107e+00,
        -7.89984062e+00, -8.11466111e+00, -8.28230086e+00,
        -8.79253862e+00, -8.86994311e+00, -9.31299476e+00,
        -9.80834199e+00, -9.97333771e+00, -1.08349979e+01,
        -1.13199826e+01, -1.22890930e+01, -1.31550471e+01,
        -1.42753713e+01, -1.55721098e+01, -1.73811490e+01,
        -1.88856303e+01, -2.09570569e+01, -2.30559500e+01,
        -2.52127149e+01, -2.76119605e+01, -3.03141128e+01,
        -3.30900203e+01, -3.62799730e+01, -3.91169706e+01,
        -4.24246421e+01, -4.55740527e+01, -4.92914871e+01,
        -5.30682805e+01, -5.70043846e+01, -6.06075991e+01,
        -6.45251018e+01, -6.86128365e+01, -7.35896515e+01,
        -7.92634608e+01, -8.34733231e+01, -9.29802390e+01,
        -1.01179788e+02, -1.10437881e+02, -1.20569527e+02,
        -1.31569973e+02, -1.43633399e+02, -1.57534056e+02,
        -1.73244610e+02, -1.90066728e+02, -2.07980863e+02,
        -2.27589046e+02, -2.50241670e+02, -2.76314755e+02,
        -3.04930986e+02, -3.36196973e+02, -3.70907934e+02,
        -4.10966644e+02, -4.56684022e+02, -5.06945218e+02,
        -5.61838645e+02, -6.22617808e+02, -6.90840503e+02,
        -7.67825713e+02, -8.54436805e+02, -9.51106365e+02,
        -1.05780305e+03, -1.17435473e+03, -1.30045062e+03,
        -1.43571221e+03, -1.57971603e+03, -1.73204264e+03,
        -1.88430524e+03, -2.03403679e+03, -2.17861987e+03,
        -2.31532884e+03, -8.00654731e+03, -5.21487172e-02,
        -2.80234170e-01, 4.93894552e-01, 3.11884938e-01, 6.55799607e-01,
        5.62182419e-01,  3.86074983e-01,  3.43741491e-01,  4.22461089e-01,
        3.63707951e-01,  4.93150010e-01,  4.72813688e-01,  4.07390308e-01,
        4.94974186e-01,  4.69900128e-01,  4.37562389e-01,  5.67370182e-01,
        4.88965362e-01,  6.40728461e-01,  6.14619979e-01,  4.97173823e-01,
        6.19549666e-01,  6.51193557e-01,  4.48906118e-01,  7.93091492e-01,
        6.51249363e-01,  6.56307713e-01,  1.12948552e+00,  9.50018058e-01,
        6.79613030e-01,  9.51359123e-01,  6.31059147e-01,  7.97896887e-01,
        8.44620817e-01,  7.43683837e-01,  1.56693187e+00,  2.75630011e-01,
        5.32956891e-01,  1.57110727e+00,  1.22674610e+00, 4.63932928e-01,
        1.47225464e+00,  1.16948107e+00,  1.07965795e+00, -3.20557791e-01,
        -1.17064127e+00, -7.84880649e-01, -7.60851182e-01, -1.61415945e+00,
        -8.30363975e-01, -1.68459409e+00, -1.49260581e+00, -1.84257084e+00,
        -1.72143079e+00, -1.43131579e+00, -1.63719219e+00, -1.43874851e+00,
        -1.57207905e+00, -1.72909159e+00, -1.98778122e+00, -1.80843826e+00,
        -2.12828312e+00, -2.24768762e+00, -2.36961877e+00, -2.49117258e+00,
        -2.59914065e+00, -2.82309085e+00, -2.93613362e+00, -3.34446991e+00,
        -3.45445086e+00, -3.74962140e+00, -3.78113417e+00, -4.55643800e+00,
        -4.86929016e+00, -5.08657898e+00, -5.22054177e+00, -5.54606515e+00,
        -5.78478304e+00, -5.93652041e+00, -6.11519786e+00])

    assert(np.allclose(np.array(test_list), np.array(expected_list)))
def test_get_tr(TR, j, p, method, expected):
    # Test the get_tr function
    test_value = household.get_tr(TR, j, p, method)
    print('Test value = ', test_value)
    assert np.allclose(test_value, expected)
Beispiel #3
0
def run_TPI(p, client=None):
    '''
    Solve for transition path equilibrium of OG-India.

    Args:
        p (OG-India Specifcations object): model parameters
        client (Dask client object): client

    Returns:
        output (dictionary): dictionary with transition path solution
            results

    '''
    # unpack tuples of parameters
    initial_values, ss_vars, theta, baseline_values = get_initial_SS_values(p)
    (B0, b_sinit, b_splus1init, factor, initial_b, initial_n,
     D0) = initial_values
    (TRbaseline, Gbaseline) = baseline_values

    print('Government spending breakpoints are tG1: ', p.tG1, '; and tG2:',
          p.tG2)

    # Initialize guesses at time paths
    # Make array of initial guesses for labor supply and savings
    domain = np.linspace(0, p.T, p.T)
    domain2 = np.tile(domain.reshape(p.T, 1, 1), (1, p.S, p.J))
    ending_b = ss_vars['bssmat_splus1']
    guesses_b = (-1 / (domain2 + 1)) * (ending_b - initial_b) + ending_b
    ending_b_tail = np.tile(ending_b.reshape(1, p.S, p.J), (p.S, 1, 1))
    guesses_b = np.append(guesses_b, ending_b_tail, axis=0)

    domain3 = np.tile(np.linspace(0, 1, p.T).reshape(p.T, 1, 1), (1, p.S, p.J))
    guesses_n = domain3 * (ss_vars['nssmat'] - initial_n) + initial_n
    ending_n_tail = np.tile(ss_vars['nssmat'].reshape(1, p.S, p.J),
                            (p.S, 1, 1))
    guesses_n = np.append(guesses_n, ending_n_tail, axis=0)
    b_mat = guesses_b
    n_mat = guesses_n
    ind = np.arange(p.S)

    L_init = np.ones((p.T + p.S, )) * ss_vars['Lss']
    B_init = np.ones((p.T + p.S, )) * ss_vars['Bss']
    L_init[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
    B_init[1:p.T] = aggr.get_B(b_mat[:p.T], p, 'TPI', False)[:p.T - 1]
    B_init[0] = B0

    if not p.small_open:
        if p.budget_balance:
            K_init = B_init
        else:
            K_init = B_init * ss_vars['Kss'] / ss_vars['Bss']
    else:
        K_init = firm.get_B(L_init, p.firm_r, p, 'TPI')

    K = K_init
    K_d = K_init * ss_vars['K_d_ss'] / ss_vars['Kss']
    K_f = K_init * ss_vars['K_f_ss'] / ss_vars['Kss']

    L = L_init
    B = B_init
    Y = np.zeros_like(K)
    Y[:p.T] = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
    Y[p.T:] = ss_vars['Yss']
    r = np.zeros_like(Y)
    if not p.small_open:
        r[:p.T] = firm.get_r(Y[:p.T], K[:p.T], p, 'TPI')
        r[p.T:] = ss_vars['rss']
    else:
        r = p.firm_r
    # compute w
    w = np.zeros_like(r)
    w[:p.T] = firm.get_w_from_r(r[:p.T], p, 'TPI')
    w[p.T:] = ss_vars['wss']
    r_gov = fiscal.get_r_gov(r, p)
    if p.budget_balance:
        r_hh = r
    else:
        r_hh = aggr.get_r_hh(r, r_gov, K, ss_vars['Dss'])
    if p.small_open:
        r_hh = p.hh_r

    BQ0 = aggr.get_BQ(r[0], initial_b, None, p, 'SS', True)
    if not p.use_zeta:
        BQ = np.zeros((p.T + p.S, p.J))
        for j in range(p.J):
            BQ[:, j] = (list(np.linspace(BQ0[j], ss_vars['BQss'][j], p.T)) +
                        [ss_vars['BQss'][j]] * p.S)
        BQ = np.array(BQ)
    else:
        BQ = (list(np.linspace(BQ0, ss_vars['BQss'], p.T)) +
              [ss_vars['BQss']] * p.S)
        BQ = np.array(BQ)
    if p.budget_balance:
        if np.abs(ss_vars['TR_ss']) < 1e-13:
            TR_ss2 = 0.0  # sometimes SS is very small but not zero,
            # even if taxes are zero, this get's rid of the approximation
            # error, which affects the perc changes below
        else:
            TR_ss2 = ss_vars['TR_ss']
        TR = np.ones(p.T + p.S) * TR_ss2
        total_revenue = TR
        G = np.zeros(p.T + p.S)
    elif not p.baseline_spending:
        TR = p.alpha_T * Y
        G = np.ones(p.T + p.S) * ss_vars['Gss']
    elif p.baseline_spending:
        TR = TRbaseline
        TR_new = p.TR  # Need to set TR_new for later reference
        G = Gbaseline
        G_0 = Gbaseline[0]

    # Initialize some starting values
    if p.budget_balance:
        D = np.zeros(p.T + p.S)
    else:
        D = np.ones(p.T + p.S) * ss_vars['Dss']
    if ss_vars['Dss'] == 0:
        D_d = np.zeros(p.T + p.S)
        D_f = np.zeros(p.T + p.S)
    else:
        D_d = D * ss_vars['D_d_ss'] / ss_vars['Dss']
        D_f = D * ss_vars['D_f_ss'] / ss_vars['Dss']
    total_revenue = np.ones(p.T + p.S) * ss_vars['total_revenue_ss']

    TPIiter = 0
    TPIdist = 10
    euler_errors = np.zeros((p.T, 2 * p.S, p.J))
    TPIdist_vec = np.zeros(p.maxiter)

    # TPI loop
    while (TPIiter < p.maxiter) and (TPIdist >= p.mindist_TPI):
        r_gov[:p.T] = fiscal.get_r_gov(r[:p.T], p)
        if p.budget_balance:
            r_hh[:p.T] = r[:p.T]
        else:
            K[:p.T] = firm.get_K_from_Y(Y[:p.T], r[:p.T], p, 'TPI')
            r_hh[:p.T] = aggr.get_r_hh(r[:p.T], r_gov[:p.T], K[:p.T], D[:p.T])
        if p.small_open:
            r_hh[:p.T] = p.hh_r[:p.T]

        outer_loop_vars = (r, w, r_hh, BQ, TR, theta)

        euler_errors = np.zeros((p.T, 2 * p.S, p.J))
        lazy_values = []
        for j in range(p.J):
            guesses = (guesses_b[:, :, j], guesses_n[:, :, j])
            lazy_values.append(
                delayed(inner_loop)(guesses, outer_loop_vars, initial_values,
                                    j, ind, p))
        results = compute(*lazy_values,
                          scheduler=dask.multiprocessing.get,
                          num_workers=p.num_workers)
        for j, result in enumerate(results):
            euler_errors[:, :, j], b_mat[:, :, j], n_mat[:, :, j] = result

        bmat_s = np.zeros((p.T, p.S, p.J))
        bmat_s[0, 1:, :] = initial_b[:-1, :]
        bmat_s[1:, 1:, :] = b_mat[:p.T - 1, :-1, :]
        bmat_splus1 = np.zeros((p.T, p.S, p.J))
        bmat_splus1[:, :, :] = b_mat[:p.T, :, :]

        etr_params_4D = np.tile(
            p.etr_params.reshape(p.T, p.S, 1, p.etr_params.shape[2]),
            (1, 1, p.J, 1))
        bqmat = household.get_bq(BQ, None, p, 'TPI')
        trmat = household.get_tr(TR, None, p, 'TPI')
        tax_mat = tax.total_taxes(r_hh[:p.T], w[:p.T], bmat_s,
                                  n_mat[:p.T, :, :], bqmat[:p.T, :, :], factor,
                                  trmat[:p.T, :, :], theta, 0, None, False,
                                  'TPI', p.e, etr_params_4D, p)
        r_hh_path = utils.to_timepath_shape(r_hh, p)
        wpath = utils.to_timepath_shape(w, p)
        c_mat = household.get_cons(r_hh_path[:p.T, :, :], wpath[:p.T, :, :],
                                   bmat_s, bmat_splus1, n_mat[:p.T, :, :],
                                   bqmat[:p.T, :, :], tax_mat, p.e,
                                   p.tau_c[:p.T, :, :], p)
        y_before_tax_mat = (r_hh_path[:p.T, :, :] * bmat_s[:p.T, :, :] +
                            wpath[:p.T, :, :] * p.e * n_mat[:p.T, :, :])

        if not p.baseline_spending and not p.budget_balance:
            Y[:p.T] = TR[:p.T] / p.alpha_T[:p.T]  # maybe unecessary

            (total_rev, T_Ipath, T_Ppath, T_BQpath,
             T_Wpath, T_Cpath, business_revenue) = aggr.revenue(
                 r_hh[:p.T], w[:p.T], bmat_s, n_mat[:p.T, :, :],
                 bqmat[:p.T, :, :], c_mat[:p.T, :, :], Y[:p.T], L[:p.T],
                 K[:p.T], factor, theta, etr_params_4D, p, 'TPI')
            total_revenue[:p.T] = total_rev
            # set intial debt value
            if p.baseline:
                D0 = p.initial_debt_ratio * Y[0]
            if not p.baseline_spending:
                G_0 = p.alpha_G[0] * Y[0]
            dg_fixed_values = (Y, total_revenue, TR, D0, G_0)
            Dnew, G[:p.T] = fiscal.D_G_path(r_gov, dg_fixed_values, Gbaseline,
                                            p)
            # Fix initial amount of foreign debt holding
            D_f[0] = p.initial_foreign_debt_ratio * Dnew[0]
            for t in range(1, p.T):
                D_f[t + 1] = (D_f[t] / (np.exp(p.g_y) * (1 + p.g_n[t + 1])) +
                              p.zeta_D[t] * (Dnew[t + 1] -
                                             (Dnew[t] / (np.exp(p.g_y) *
                                                         (1 + p.g_n[t + 1])))))
            D_d[:p.T] = Dnew[:p.T] - D_f[:p.T]
        else:  # if budget balance
            Dnew = np.zeros(p.T + 1)
            G[:p.T] = np.zeros(p.T)
            D_f[:p.T] = np.zeros(p.T)
            D_d[:p.T] = np.zeros(p.T)

        L[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI')
        B[1:p.T] = aggr.get_B(bmat_splus1[:p.T], p, 'TPI', False)[:p.T - 1]
        K_demand_open = firm.get_K(L[:p.T], p.firm_r[:p.T], p, 'TPI')
        K_d[:p.T] = B[:p.T] - D_d[:p.T]
        if np.any(K_d < 0):
            print('K_d has negative elements. Setting them ' +
                  'positive to prevent NAN.')
            K_d[:p.T] = np.fmax(K_d[:p.T], 0.05 * B[:p.T])
        K_f[:p.T] = p.zeta_K[:p.T] * (K_demand_open - B[:p.T] + D_d[:p.T])
        K = K_f + K_d
        if np.any(B) < 0:
            print('B has negative elements. B[0:9]:', B[0:9])
            print('B[T-2:T]:', B[p.T - 2, p.T])
        if p.small_open:
            K[:p.T] = K_demand_open
        Ynew = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI')
        rnew = r.copy()
        if not p.small_open:
            rnew[:p.T] = firm.get_r(Ynew[:p.T], K[:p.T], p, 'TPI')
        else:
            rnew[:p.T] = r[:p.T].copy()
        r_gov_new = fiscal.get_r_gov(rnew, p)
        if p.budget_balance:
            r_hh_new = rnew[:p.T]
        else:
            r_hh_new = aggr.get_r_hh(rnew[:p.T], r_gov_new[:p.T], K[:p.T],
                                     Dnew[:p.T])
        if p.small_open:
            r_hh_new = p.hh_r[:p.T]
        # compute w
        wnew = firm.get_w_from_r(rnew[:p.T], p, 'TPI')

        b_mat_shift = np.append(np.reshape(initial_b, (1, p.S, p.J)),
                                b_mat[:p.T - 1, :, :],
                                axis=0)
        BQnew = aggr.get_BQ(r_hh_new[:p.T], b_mat_shift, None, p, 'TPI', False)
        bqmat_new = household.get_bq(BQnew, None, p, 'TPI')
        (total_rev, T_Ipath, T_Ppath, T_BQpath,
         T_Wpath, T_Cpath, business_revenue) = aggr.revenue(
             r_hh_new[:p.T], wnew[:p.T], bmat_s, n_mat[:p.T, :, :],
             bqmat_new[:p.T, :, :], c_mat[:p.T, :, :], Ynew[:p.T], L[:p.T],
             K[:p.T], factor, theta, etr_params_4D, p, 'TPI')
        total_revenue[:p.T] = total_rev

        if p.budget_balance:
            TR_new = total_revenue
        elif not p.baseline_spending:
            TR_new = p.alpha_T[:p.T] * Ynew[:p.T]
        # If baseline_spending==True, no need to update TR, it's fixed

        # update vars for next iteration
        w[:p.T] = wnew[:p.T]
        r[:p.T] = utils.convex_combo(rnew[:p.T], r[:p.T], p.nu)
        BQ[:p.T] = utils.convex_combo(BQnew[:p.T], BQ[:p.T], p.nu)
        D[:p.T] = Dnew[:p.T]
        Y[:p.T] = utils.convex_combo(Ynew[:p.T], Y[:p.T], p.nu)
        if not p.baseline_spending:
            TR[:p.T] = utils.convex_combo(TR_new[:p.T], TR[:p.T], p.nu)
        guesses_b = utils.convex_combo(b_mat, guesses_b, p.nu)
        guesses_n = utils.convex_combo(n_mat, guesses_n, p.nu)
        print('r diff: ', (rnew[:p.T] - r[:p.T]).max(),
              (rnew[:p.T] - r[:p.T]).min())
        print('BQ diff: ', (BQnew[:p.T] - BQ[:p.T]).max(),
              (BQnew[:p.T] - BQ[:p.T]).min())
        print('TR diff: ', (TR_new[:p.T] - TR[:p.T]).max(),
              (TR_new[:p.T] - TR[:p.T]).min())
        print('Y diff: ', (Ynew[:p.T] - Y[:p.T]).max(),
              (Ynew[:p.T] - Y[:p.T]).min())
        if not p.baseline_spending:
            if TR.all() != 0:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(utils.pct_diff_func(TR_new[:p.T], TR[:p.T]))).max()
            else:
                TPIdist = np.array(
                    list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(
                        utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                    list(np.abs(TR[:p.T]))).max()
        else:
            TPIdist = np.array(
                list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) +
                list(utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) +
                list(utils.pct_diff_func(Ynew[:p.T], Y[:p.T]))).max()

        TPIdist_vec[TPIiter] = TPIdist
        # After T=10, if cycling occurs, drop the value of nu
        # wait til after T=10 or so, because sometimes there is a jump up
        # in the first couple iterations
        # if TPIiter > 10:
        #     if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0:
        #         nu /= 2
        #         print 'New Value of nu:', nu
        TPIiter += 1
        print('Iteration:', TPIiter)
        print('\tDistance:', TPIdist)

    # Compute effective and marginal tax rates for all agents
    mtrx_params_4D = np.tile(
        p.mtrx_params.reshape(p.T, p.S, 1, p.mtrx_params.shape[2]),
        (1, 1, p.J, 1))
    mtry_params_4D = np.tile(
        p.mtry_params.reshape(p.T, p.S, 1, p.mtry_params.shape[2]),
        (1, 1, p.J, 1))

    e_3D = np.tile(p.e.reshape(1, p.S, p.J), (p.T, 1, 1))
    mtry_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               True, e_3D, etr_params_4D, mtry_params_4D, p)
    mtrx_path = tax.MTR_income(r_hh_path[:p.T], wpath[:p.T],
                               bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor,
                               False, e_3D, etr_params_4D, mtrx_params_4D, p)
    etr_path = tax.ETR_income(r_hh_path[:p.T], wpath[:p.T], bmat_s[:p.T, :, :],
                              n_mat[:p.T, :, :], factor, e_3D, etr_params_4D,
                              p)

    C = aggr.get_C(c_mat, p, 'TPI')
    # Note that implicity in this computation is that immigrants'
    # wealth is all in the form of private capital
    I_d = aggr.get_I(bmat_splus1[:p.T], K_d[1:p.T + 1], K_d[:p.T], p, 'TPI')
    I = aggr.get_I(bmat_splus1[:p.T], K[1:p.T + 1], K[:p.T], p, 'TPI')
    # solve resource constraint
    # net foreign borrowing
    new_borrowing_f = (D_f[1:p.T + 1] * np.exp(p.g_y) *
                       (1 + p.g_n[1:p.T + 1]) - D_f[:p.T])
    debt_service_f = D_f * r_hh
    RC_error = aggr.resource_constraint(Y[:p.T - 1], C[:p.T - 1], G[:p.T - 1],
                                        I_d[:p.T - 1], K_f[:p.T - 1],
                                        new_borrowing_f[:p.T - 1],
                                        debt_service_f[:p.T - 1],
                                        r_hh[:p.T - 1], p)

    # Compute total investment (not just domestic)
    I_total = ((1 + p.g_n[:p.T]) * np.exp(p.g_y) * K[1:p.T + 1] -
               (1.0 - p.delta) * K[:p.T])

    rce_max = np.amax(np.abs(RC_error))
    print('Max absolute value resource constraint error:', rce_max)

    print('Checking time path for violations of constraints.')
    for t in range(p.T):
        household.constraint_checker_TPI(b_mat[t], n_mat[t], c_mat[t], t,
                                         p.ltilde)

    eul_savings = euler_errors[:, :p.S, :].max(1).max(1)
    eul_laborleisure = euler_errors[:, p.S:, :].max(1).max(1)

    print('Max Euler error, savings: ', eul_savings)
    print('Max Euler error labor supply: ', eul_laborleisure)
    '''
    ------------------------------------------------------------------------
    Save variables/values so they can be used in other modules
    ------------------------------------------------------------------------
    '''

    output = {
        'Y': Y[:p.T],
        'B': B,
        'K': K,
        'K_f': K_f,
        'K_d': K_d,
        'L': L,
        'C': C,
        'I': I,
        'I_total': I_total,
        'I_d': I_d,
        'BQ': BQ,
        'total_revenue': total_revenue,
        'business_revenue': business_revenue,
        'IITpayroll_revenue': T_Ipath,
        'TR': TR,
        'T_P': T_Ppath,
        'T_BQ': T_BQpath,
        'T_W': T_Wpath,
        'T_C': T_Cpath,
        'G': G,
        'D': D,
        'D_f': D_f,
        'D_d': D_d,
        'r': r,
        'r_gov': r_gov,
        'r_hh': r_hh,
        'w': w,
        'bmat_splus1': bmat_splus1,
        'bmat_s': bmat_s[:p.T, :, :],
        'n_mat': n_mat[:p.T, :, :],
        'c_path': c_mat,
        'bq_path': bqmat,
        'tr_path': trmat,
        'y_before_tax_mat': y_before_tax_mat,
        'tax_path': tax_mat,
        'eul_savings': eul_savings,
        'eul_laborleisure': eul_laborleisure,
        'resource_constraint_error': RC_error,
        'new_borrowing_f': new_borrowing_f,
        'debt_service_f': debt_service_f,
        'etr_path': etr_path,
        'mtrx_path': mtrx_path,
        'mtry_path': mtry_path
    }

    tpi_dir = os.path.join(p.output_base, "TPI")
    utils.mkdirs(tpi_dir)
    tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
    pickle.dump(output, open(tpi_vars, "wb"))

    if np.any(G) < 0:
        print('Government spending is negative along transition path' +
              ' to satisfy budget')

    if (((TPIiter >= p.maxiter) or (np.absolute(TPIdist) > p.mindist_TPI))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found' +
                           ' (TPIdist)')

    if ((np.any(np.absolute(RC_error) >= p.mindist_TPI * 10))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(RC_error)')

    if ((np.any(np.absolute(eul_savings) >= p.mindist_TPI) or
         (np.any(np.absolute(eul_laborleisure) > p.mindist_TPI)))
            and ENFORCE_SOLUTION_CHECKS):
        raise RuntimeError('Transition path equlibrium not found ' +
                           '(eulers)')

    return output
Beispiel #4
0
def inner_loop(guesses, outer_loop_vars, initial_values, j, ind, p):
    '''
    Given path of economic aggregates and factor prices, solves
    household problem.  This has been termed the inner-loop (in
    constrast to the outer fixed point loop that soves for GE factor
    prices and economic aggregates).

    Args:
        guesses (tuple): initial guesses for b and n, (guesses_b,
            guesses_n)
        outer_loop_vars (tuple): values for factor prices and economic
            aggregates used in household problem (r, w, r_hh, BQ, TR,
            theta)
        r (Numpy array): real interest rate on private capital
        w (Numpy array): real wage rate
        r (Numpy array): real interest rate on household portfolio
        BQ (array_like): aggregate bequest amounts
        TR (Numpy array): lump sum transfer amount
        theta (Numpy array): retirement replacement rates, length J
        initial_values (tuple): initial period variable values,
            (b_sinit, b_splus1init, factor, initial_b, initial_n, D0)
        j (int): index of ability type
        ind (Numpy array): integers from 0 to S-1
        p (OG-India Specifcations object): model parameters

    Returns:
        euler_errors (Numpy array): errors from FOCs, size = Tx2S
        b_mat (Numpy array): savings amounts, size = TxS
        n_mat (Numpy array): labor supply amounts, size = TxS

    '''
    # unpack variables and parameters pass to function
    (K0, b_sinit, b_splus1init, factor, initial_b, initial_n,
     D0) = initial_values
    guesses_b, guesses_n = guesses
    r, w, r_hh, BQ, TR, theta = outer_loop_vars

    # compute w
    w[:p.T] = firm.get_w_from_r(r[:p.T], p, 'TPI')
    # compute bq
    bq = household.get_bq(BQ, None, p, 'TPI')
    # compute tr
    tr = household.get_tr(TR, None, p, 'TPI')

    # initialize arrays
    b_mat = np.zeros((p.T + p.S, p.S))
    n_mat = np.zeros((p.T + p.S, p.S))
    euler_errors = np.zeros((p.T, 2 * p.S))

    b_mat[0, -1], n_mat[0, -1] =\
        np.array(opt.fsolve(firstdoughnutring, [guesses_b[0, -1],
                                                guesses_n[0, -1]],
                            args=(r_hh[0], w[0], bq[0, -1, j],
                                  tr[0, -1, j],
                                  theta * p.replacement_rate_adjust[0],
                                  factor, j, initial_b, p),
                            xtol=MINIMIZER_TOL))

    for s in range(p.S - 2):  # Upper triangle
        ind2 = np.arange(s + 2)
        b_guesses_to_use = np.diag(guesses_b[:p.S, :], p.S - (s + 2))
        n_guesses_to_use = np.diag(guesses_n[:p.S, :], p.S - (s + 2))
        theta_to_use = theta[j] * p.replacement_rate_adjust[:p.S]
        bq_to_use = np.diag(bq[:p.S, :, j], p.S - (s + 2))
        tr_to_use = np.diag(tr[:p.S, :, j], p.S - (s + 2))
        tau_c_to_use = np.diag(p.tau_c[:p.S, :, j], p.S - (s + 2))

        length_diag =\
            np.diag(p.etr_params[:p.S, :, 0], p.S-(s + 2)).shape[0]
        etr_params_to_use = np.zeros((length_diag, p.etr_params.shape[2]))
        mtrx_params_to_use = np.zeros((length_diag, p.mtrx_params.shape[2]))
        mtry_params_to_use = np.zeros((length_diag, p.mtry_params.shape[2]))
        for i in range(p.etr_params.shape[2]):
            etr_params_to_use[:, i] =\
                np.diag(p.etr_params[:p.S, :, i], p.S - (s + 2))
            mtrx_params_to_use[:, i] =\
                np.diag(p.mtrx_params[:p.S, :, i], p.S - (s + 2))
            mtry_params_to_use[:, i] =\
                np.diag(p.mtry_params[:p.S, :, i], p.S - (s + 2))

        solutions = opt.fsolve(
            twist_doughnut,
            list(b_guesses_to_use) + list(n_guesses_to_use),
            args=(r_hh, w, bq_to_use, tr_to_use, theta_to_use, factor, j, s, 0,
                  tau_c_to_use, etr_params_to_use, mtrx_params_to_use,
                  mtry_params_to_use, initial_b, p),
            xtol=MINIMIZER_TOL)

        b_vec = solutions[:int(len(solutions) / 2)]
        b_mat[ind2, p.S - (s + 2) + ind2] = b_vec
        n_vec = solutions[int(len(solutions) / 2):]
        n_mat[ind2, p.S - (s + 2) + ind2] = n_vec

    for t in range(0, p.T):
        b_guesses_to_use = .75 * \
            np.diag(guesses_b[t:t + p.S, :])
        n_guesses_to_use = np.diag(guesses_n[t:t + p.S, :])
        theta_to_use = theta[j] * p.replacement_rate_adjust[t:t + p.S]
        bq_to_use = np.diag(bq[t:t + p.S, :, j])
        tr_to_use = np.diag(tr[t:t + p.S, :, j])
        tau_c_to_use = np.diag(p.tau_c[t:t + p.S, :, j])

        # initialize array of diagonal elements
        etr_params_TP = np.zeros((p.T + p.S, p.S, p.etr_params.shape[2]))
        etr_params_TP[:p.T, :, :] = p.etr_params
        etr_params_TP[p.T:, :, :] = p.etr_params[-1, :, :]

        mtrx_params_TP = np.zeros((p.T + p.S, p.S, p.mtrx_params.shape[2]))
        mtrx_params_TP[:p.T, :, :] = p.mtrx_params
        mtrx_params_TP[p.T:, :, :] = p.mtrx_params[-1, :, :]

        mtry_params_TP = np.zeros((p.T + p.S, p.S, p.mtry_params.shape[2]))
        mtry_params_TP[:p.T, :, :] = p.mtry_params
        mtry_params_TP[p.T:, :, :] = p.mtry_params[-1, :, :]

        length_diag =\
            np.diag(etr_params_TP[t:t + p.S, :, 0]).shape[0]
        etr_params_to_use = np.zeros((length_diag, p.etr_params.shape[2]))
        mtrx_params_to_use = np.zeros((length_diag, p.mtrx_params.shape[2]))
        mtry_params_to_use = np.zeros((length_diag, p.mtry_params.shape[2]))

        for i in range(p.etr_params.shape[2]):
            etr_params_to_use[:, i] = np.diag(etr_params_TP[t:t + p.S, :, i])
            mtrx_params_to_use[:, i] = np.diag(mtrx_params_TP[t:t + p.S, :, i])
            mtry_params_to_use[:, i] = np.diag(mtry_params_TP[t:t + p.S, :, i])
        #
        # TPI_solver_params = (inc_tax_params_TP, tpi_params, None)
        [solutions, infodict, ier, message] =\
            opt.fsolve(twist_doughnut, list(b_guesses_to_use) +
                       list(n_guesses_to_use),
                       args=(r_hh, w, bq_to_use, tr_to_use,
                             theta_to_use, factor,
                             j, None, t, tau_c_to_use,
                             etr_params_to_use, mtrx_params_to_use,
                             mtry_params_to_use, initial_b, p),
                       xtol=MINIMIZER_TOL, full_output=True)
        euler_errors[t, :] = infodict['fvec']

        b_vec = solutions[:p.S]
        b_mat[t + ind, ind] = b_vec
        n_vec = solutions[p.S:]
        n_mat[t + ind, ind] = n_vec

    print('Type ', j, ' max euler error = ', euler_errors.max())

    return euler_errors, b_mat, n_mat
Beispiel #5
0
def inner_loop(outer_loop_vars, p, client):
    '''
    This function solves for the inner loop of the SS.  That is, given
    the guesses of the outer loop variables (r, w, TR, factor) this
    function solves the households' problems in the SS.

    Args:
        outer_loop_vars (tuple): tuple of outer loop variables,
            (bssmat, nssmat, r, BQ, TR, factor) or
            (bssmat, nssmat, r, BQ, Y, TR, factor)
        bssmat (Numpy array): initial guess at savings, size = SxJ
        nssmat (Numpy array): initial guess at labor supply, size = SxJ
        BQ (array_like): aggregate bequest amount(s)
        Y (scalar): real GDP
        TR (scalar): lump sum transfer amount
        factor (scalar): scaling factor converting model units to dollars
        w (scalar): real wage rate
        p (OG-India Specifcations object): model parameters
        client (Dask client object): client

    Returns:
        euler_errors (Numpy array): errors terms from FOCs, size = 2SxJ
        bssmat (Numpy array): savings, size = SxJ
        nssmat (Numpy array): labor supply, size = SxJ
        new_r (scalar): real interest rate on firm capital
        new_r_gov (scalar): real interest rate on government debt
        new_r_hh (scalar): real interest rate on household portfolio
        new_w (scalar): real wage rate
        new_TR (scalar): lump sum transfer amount
        new_Y (scalar): real GDP
        new_factor (scalar): scaling factor converting model units to
            dollars
        new_BQ (array_like): aggregate bequest amount(s)
        average_income_model (scalar): average income in model units

    '''
    # unpack variables to pass to function
    if p.budget_balance:
        bssmat, nssmat, r, BQ, TR, factor = outer_loop_vars
    else:
        bssmat, nssmat, r, BQ, Y, TR, factor = outer_loop_vars

    euler_errors = np.zeros((2 * p.S, p.J))

    w = firm.get_w_from_r(r, p, 'SS')
    r_gov = fiscal.get_r_gov(r, p)
    if p.budget_balance:
        r_hh = r
        D = 0
    else:
        D = p.debt_ratio_ss * Y
        K = firm.get_K_from_Y(Y, r, p, 'SS')
        r_hh = aggr.get_r_hh(r, r_gov, K, D)
    if p.small_open:
        r_hh = p.hh_r[-1]
    bq = household.get_bq(BQ, None, p, 'SS')
    tr = household.get_tr(TR, None, p, 'SS')

    lazy_values = []
    for j in range(p.J):
        guesses = np.append(bssmat[:, j], nssmat[:, j])
        euler_params = (r_hh, w, bq[:, j], tr[:, j], factor, j, p)
        lazy_values.append(
            delayed(opt.fsolve)(euler_equation_solver,
                                guesses * .9,
                                args=euler_params,
                                xtol=MINIMIZER_TOL,
                                full_output=True))
    results = compute(*lazy_values,
                      scheduler=dask.multiprocessing.get,
                      num_workers=p.num_workers)

    # for j, result in results.items():
    for j, result in enumerate(results):
        [solutions, infodict, ier, message] = result
        euler_errors[:, j] = infodict['fvec']
        bssmat[:, j] = solutions[:p.S]
        nssmat[:, j] = solutions[p.S:]

    L = aggr.get_L(nssmat, p, 'SS')
    B = aggr.get_B(bssmat, p, 'SS', False)
    K_demand_open = firm.get_K(L, p.firm_r[-1], p, 'SS')
    D_f = p.zeta_D[-1] * D
    D_d = D - D_f
    if not p.small_open:
        K_d = B - D_d
        K_f = p.zeta_K[-1] * (K_demand_open - B + D_d)
        K = K_f + K_d
    else:
        # can remove this else statement by making small open the case
        # where zeta_K = 1
        K_d = B - D_d
        K_f = K_demand_open - B + D_d
        K = K_f + K_d
    new_Y = firm.get_Y(K, L, p, 'SS')
    if p.budget_balance:
        Y = new_Y
    if not p.small_open:
        new_r = firm.get_r(Y, K, p, 'SS')
    else:
        new_r = p.firm_r[-1]
    new_w = firm.get_w_from_r(new_r, p, 'SS')

    b_s = np.array(list(np.zeros(p.J).reshape(1, p.J)) + list(bssmat[:-1, :]))
    new_r_gov = fiscal.get_r_gov(new_r, p)
    new_r_hh = aggr.get_r_hh(new_r, new_r_gov, K, D)
    average_income_model = ((new_r_hh * b_s + new_w * p.e * nssmat) *
                            p.omega_SS.reshape(p.S, 1) *
                            p.lambdas.reshape(1, p.J)).sum()
    if p.baseline:
        new_factor = p.mean_income_data / average_income_model
    else:
        new_factor = factor
    new_BQ = aggr.get_BQ(new_r_hh, bssmat, None, p, 'SS', False)
    new_bq = household.get_bq(new_BQ, None, p, 'SS')
    tr = household.get_tr(TR, None, p, 'SS')
    theta = tax.replacement_rate_vals(nssmat, new_w, new_factor, None, p)

    if p.budget_balance:
        etr_params_3D = np.tile(
            np.reshape(p.etr_params[-1, :, :],
                       (p.S, 1, p.etr_params.shape[2])), (1, p.J, 1))
        taxss = tax.total_taxes(new_r_hh, new_w, b_s, nssmat, new_bq, factor,
                                tr, theta, None, None, False, 'SS', p.e,
                                etr_params_3D, p)
        cssmat = household.get_cons(new_r_hh, new_w, b_s, bssmat, nssmat,
                                    new_bq, taxss, p.e, p.tau_c[-1, :, :], p)
        new_TR, _, _, _, _, _, _ = aggr.revenue(new_r_hh, new_w, b_s, nssmat,
                                                new_bq, cssmat, new_Y, L, K,
                                                factor, theta, etr_params_3D,
                                                p, 'SS')
    elif p.baseline_spending:
        new_TR = TR
    else:
        new_TR = p.alpha_T[-1] * new_Y

    return euler_errors, bssmat, nssmat, new_r, new_r_gov, new_r_hh, \
        new_w, new_TR, new_Y, new_factor, new_BQ, average_income_model
Beispiel #6
0
def SS_solver(bmat, nmat, r, BQ, TR, factor, Y, p, client, fsolve_flag=False):
    '''
    Solves for the steady state distribution of capital, labor, as well
    as w, r, TR and the scaling factor, using functional iteration.

    Args:
        bmat (Numpy array): initial guess at savings, size = SxJ
        nmat (Numpy array): initial guess at labor supply, size = SxJ
        r (scalar): real interest rate
        BQ (array_like): aggregate bequest amount(s)
        TR (scalar): lump sum transfer amount
        factor (scalar): scaling factor converting model units to dollars
        Y (scalar): real GDP
        p (OG-India Specifcations object): model parameters
        client (Dask client object): client

    Returns:
        output (dictionary): dictionary with steady state solution
            results

    '''
    # Rename the inputs
    if not p.budget_balance:
        if not p.baseline_spending:
            Y = TR / p.alpha_T[-1]
    if p.small_open:
        r = p.hh_r[-1]

    dist = 10
    iteration = 0
    dist_vec = np.zeros(p.maxiter)
    maxiter_ss = p.maxiter
    nu_ss = p.nu

    if fsolve_flag:
        maxiter_ss = 1

    while (dist > p.mindist_SS) and (iteration < maxiter_ss):
        # Solve for the steady state levels of b and n, given w, r,
        # Y and factor
        if p.budget_balance:
            outer_loop_vars = (bmat, nmat, r, BQ, TR, factor)
        else:
            outer_loop_vars = (bmat, nmat, r, BQ, Y, TR, factor)

        (euler_errors, new_bmat, new_nmat, new_r, new_r_gov, new_r_hh,
         new_w, new_TR, new_Y, new_factor, new_BQ,
         average_income_model) =\
            inner_loop(outer_loop_vars, p, client)

        r = utils.convex_combo(new_r, r, nu_ss)
        factor = utils.convex_combo(new_factor, factor, nu_ss)
        BQ = utils.convex_combo(new_BQ, BQ, nu_ss)
        # bmat = utils.convex_combo(new_bmat, bmat, nu_ss)
        # nmat = utils.convex_combo(new_nmat, nmat, nu_ss)
        if not p.baseline_spending:
            TR = utils.convex_combo(new_TR, TR, nu_ss)
            dist = np.array([utils.pct_diff_func(new_r, r)] +
                            list(utils.pct_diff_func(new_BQ, BQ)) +
                            [utils.pct_diff_func(new_TR, TR)] +
                            [utils.pct_diff_func(new_factor, factor)]).max()
        else:
            Y = utils.convex_combo(new_Y, Y, nu_ss)
            if Y != 0:
                dist = np.array(
                    [utils.pct_diff_func(new_r, r)] +
                    list(utils.pct_diff_func(new_BQ, BQ)) +
                    [utils.pct_diff_func(new_Y, Y)] +
                    [utils.pct_diff_func(new_factor, factor)]).max()
            else:
                # If Y is zero (if there is no output), a percent difference
                # will throw NaN's, so we use an absolute difference
                dist = np.array(
                    [utils.pct_diff_func(new_r, r)] +
                    list(utils.pct_diff_func(new_BQ, BQ)) + [abs(new_Y - Y)] +
                    [utils.pct_diff_func(new_factor, factor)]).max()
        dist_vec[iteration] = dist
        # Similar to TPI: if the distance between iterations increases, then
        # decrease the value of nu to prevent cycling
        if iteration > 10:
            if dist_vec[iteration] - dist_vec[iteration - 1] > 0:
                nu_ss /= 2.0
                print('New value of nu:', nu_ss)
        iteration += 1
        print('Iteration: %02d' % iteration, ' Distance: ', dist)

    # Generate the SS values of variables, including euler errors
    bssmat_s = np.append(np.zeros((1, p.J)), bmat[:-1, :], axis=0)
    bssmat_splus1 = bmat
    nssmat = nmat

    rss = r
    r_gov_ss = fiscal.get_r_gov(rss, p)
    if p.budget_balance:
        r_hh_ss = rss
        Dss = 0.0
    else:
        Dss = p.debt_ratio_ss * Y
    Lss = aggr.get_L(nssmat, p, 'SS')
    Bss = aggr.get_B(bssmat_splus1, p, 'SS', False)
    K_demand_open_ss = firm.get_K(Lss, p.firm_r[-1], p, 'SS')
    D_f_ss = p.zeta_D[-1] * Dss
    D_d_ss = Dss - D_f_ss
    K_d_ss = Bss - D_d_ss
    if not p.small_open:
        K_f_ss = p.zeta_K[-1] * (K_demand_open_ss - Bss + D_d_ss)
        Kss = K_f_ss + K_d_ss
        # Note that implicity in this computation is that immigrants'
        # wealth is all in the form of private capital
        I_d_ss = aggr.get_I(bssmat_splus1, K_d_ss, K_d_ss, p, 'SS')
        Iss = aggr.get_I(bssmat_splus1, Kss, Kss, p, 'SS')
    else:
        K_d_ss = Bss - D_d_ss
        K_f_ss = K_demand_open_ss - Bss + D_d_ss
        Kss = K_f_ss + K_d_ss
        InvestmentPlaceholder = np.zeros(bssmat_splus1.shape)
        Iss = aggr.get_I(InvestmentPlaceholder, Kss, Kss, p, 'SS')
        I_d_ss = aggr.get_I(bssmat_splus1, K_d_ss, K_d_ss, p, 'SS')
    r_hh_ss = aggr.get_r_hh(rss, r_gov_ss, Kss, Dss)
    wss = new_w
    BQss = new_BQ
    factor_ss = factor
    TR_ss = TR
    bqssmat = household.get_bq(BQss, None, p, 'SS')
    trssmat = household.get_tr(TR_ss, None, p, 'SS')

    Yss = firm.get_Y(Kss, Lss, p, 'SS')
    theta = tax.replacement_rate_vals(nssmat, wss, factor_ss, None, p)

    # Compute effective and marginal tax rates for all agents
    etr_params_3D = np.tile(
        np.reshape(p.etr_params[-1, :, :], (p.S, 1, p.etr_params.shape[2])),
        (1, p.J, 1))
    mtrx_params_3D = np.tile(
        np.reshape(p.mtrx_params[-1, :, :], (p.S, 1, p.mtrx_params.shape[2])),
        (1, p.J, 1))
    mtry_params_3D = np.tile(
        np.reshape(p.mtry_params[-1, :, :], (p.S, 1, p.mtry_params.shape[2])),
        (1, p.J, 1))
    mtry_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, True, p.e,
                             etr_params_3D, mtry_params_3D, p)
    mtrx_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, False,
                             p.e, etr_params_3D, mtrx_params_3D, p)
    etr_ss = tax.ETR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, p.e,
                            etr_params_3D, p)

    taxss = tax.total_taxes(r_hh_ss, wss, bssmat_s, nssmat, bqssmat, factor_ss,
                            trssmat, theta, None, None, False, 'SS', p.e,
                            etr_params_3D, p)
    cssmat = household.get_cons(r_hh_ss, wss, bssmat_s, bssmat_splus1, nssmat,
                                bqssmat, taxss, p.e, p.tau_c[-1, :, :], p)
    yss_before_tax_mat = r_hh_ss * bssmat_s + wss * p.e * nssmat
    Css = aggr.get_C(cssmat, p, 'SS')

    (total_revenue_ss, T_Iss, T_Pss, T_BQss, T_Wss, T_Css,
     business_revenue) =\
        aggr.revenue(r_hh_ss, wss, bssmat_s, nssmat, bqssmat, cssmat,
                     Yss, Lss, Kss, factor, theta, etr_params_3D, p,
                     'SS')
    debt_service_ss = r_gov_ss * Dss
    new_borrowing = Dss * ((1 + p.g_n_ss) * np.exp(p.g_y) - 1)
    # government spends such that it expands its debt at the same rate as GDP
    if p.budget_balance:
        Gss = 0.0
    else:
        Gss = total_revenue_ss + new_borrowing - (TR_ss + debt_service_ss)
        print('G components = ', new_borrowing, TR_ss, debt_service_ss)

    # Compute total investment (not just domestic)
    Iss_total = ((1 + p.g_n_ss) * np.exp(p.g_y) - 1 + p.delta) * Kss

    # solve resource constraint
    # net foreign borrowing
    print('Foreign debt holdings = ', D_f_ss)
    print('Foreign capital holdings = ', K_f_ss)
    new_borrowing_f = D_f_ss * (np.exp(p.g_y) * (1 + p.g_n_ss) - 1)
    debt_service_f = D_f_ss * r_hh_ss
    RC = aggr.resource_constraint(Yss, Css, Gss, I_d_ss, K_f_ss,
                                  new_borrowing_f, debt_service_f, r_hh_ss, p)
    print('resource constraint: ', RC)

    if Gss < 0:
        print('Steady state government spending is negative to satisfy' +
              ' budget')

    if ENFORCE_SOLUTION_CHECKS and (np.absolute(RC) > p.mindist_SS):
        print('Resource Constraint Difference:', RC)
        err = 'Steady state aggregate resource constraint not satisfied'
        raise RuntimeError(err)

    # check constraints
    household.constraint_checker_SS(bssmat_splus1, nssmat, cssmat, p.ltilde)

    euler_savings = euler_errors[:p.S, :]
    euler_labor_leisure = euler_errors[p.S:, :]
    print('Maximum error in labor FOC = ',
          np.absolute(euler_labor_leisure).max())
    print('Maximum error in savings FOC = ', np.absolute(euler_savings).max())

    # Return dictionary of SS results
    output = {
        'Kss': Kss,
        'K_f_ss': K_f_ss,
        'K_d_ss': K_d_ss,
        'Bss': Bss,
        'Lss': Lss,
        'Css': Css,
        'Iss': Iss,
        'Iss_total': Iss_total,
        'I_d_ss': I_d_ss,
        'nssmat': nssmat,
        'Yss': Yss,
        'Dss': Dss,
        'D_f_ss': D_f_ss,
        'D_d_ss': D_d_ss,
        'wss': wss,
        'rss': rss,
        'r_gov_ss': r_gov_ss,
        'r_hh_ss': r_hh_ss,
        'theta': theta,
        'BQss': BQss,
        'factor_ss': factor_ss,
        'bssmat_s': bssmat_s,
        'cssmat': cssmat,
        'bssmat_splus1': bssmat_splus1,
        'yss_before_tax_mat': yss_before_tax_mat,
        'bqssmat': bqssmat,
        'TR_ss': TR_ss,
        'trssmat': trssmat,
        'Gss': Gss,
        'total_revenue_ss': total_revenue_ss,
        'business_revenue': business_revenue,
        'IITpayroll_revenue': T_Iss,
        'T_Pss': T_Pss,
        'T_BQss': T_BQss,
        'T_Wss': T_Wss,
        'T_Css': T_Css,
        'euler_savings': euler_savings,
        'debt_service_f': debt_service_f,
        'new_borrowing_f': new_borrowing_f,
        'debt_service_ss': debt_service_ss,
        'new_borrowing': new_borrowing,
        'euler_labor_leisure': euler_labor_leisure,
        'resource_constraint_error': RC,
        'etr_ss': etr_ss,
        'mtrx_ss': mtrx_ss,
        'mtry_ss': mtry_ss
    }

    return output