Beispiel #1
0
def naive_CBF():
    dm = build_data.build_urm()
    target = build_data.loadTarget()
    rec = r.CBF_coldstart(k=50)
    rec.fit()
    recommended = rec.recommendAll(target, 10)
    playlists = recommended[:, 0]
    recommended = numpy.delete(recommended, 0, 1)
    i = 0
    res_fin = []
    for j in recommended:
        res = ''
        for k in range(0, len(j)):
            res = res + '{0} '.format(j[k])
        res_fin.append(res)
        i = i + 1
    d = {'playlist_id': playlists, 'track_ids': res_fin}
    df = pandas.DataFrame(data=d, index=None)
    df.to_csv("../results/recommended9.csv", index=None)
    i = 1 + 1
Beispiel #2
0
    def __init__(self, features):

        self._lambda = 0.1
        self._alpha = 40
        self._URM = bd.build_urm().tocsr()
        self._users = self._URM.shape[0]
        self._items = self._URM.shape[1]
        self._X = sps.csr_matrix(np.random.normal(size=(self._users,
                                                        features)))
        self._Y = sps.csr_matrix(np.random.normal(size=(self._items,
                                                        features)))

        self._X_I = sps.eye(self._users)
        self._Y_I = sps.eye(self._items)

        self._I = sps.eye(features)
        self._II = self._I * self._lambda

        self._xTx = self._X.T.dot(self._X)

        self._Cui = self._URM * self._alpha

        self._ALS_ITERS = 100
Beispiel #3
0
    def __init__(self, k, coldstart=10):

        self._coldstart = coldstart
        self._cbf = CBF_Item_Naive(k)
        self._URM = bd.build_urm().tocsr()
        self._toppop = TopPop()
Beispiel #4
0
 def __init__(self, k):
     self._cosine = sim.Cosine_Similarity(bd.build_icm(), k)
     self.URM = bd.build_urm()
     self._k = k