Beispiel #1
0
import oldtensorflow as tf


def mean_iou(ground_truth, prediction, num_classes):
    # TODO: Use `tf.metrics.mean_iou` to compute the mean IoU.
    iou, iou_op = tf.metrics.mean_iou(ground_truth, prediction, num_classes)
    return iou, iou_op


ground_truth = tf.constant(
    [[0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]], dtype=tf.float32)
prediction = tf.constant(
    [[0, 0, 0, 0], [1, 0, 0, 1], [1, 2, 2, 1], [3, 3, 0, 3]], dtype=tf.float32)

# TODO: use `mean_iou` to compute the mean IoU
iou, iou_op = mean_iou(ground_truth, prediction, 4)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    # need to initialize local variables for this to run `tf.metrics.mean_iou`
    sess.run(tf.local_variables_initializer())

    sess.run(iou_op)
    # should be 0.53869
    print("Mean IoU =", sess.run(iou))

# TODO: Use `tf.layers.conv2d` to reproduce the result of `tf.layers.dense`.
# Set the `kernel_size` and `stride`.
def conv_1x1(x, num_outputs):
    kernel_size = 1
    stride = 1
    return tf.layers.conv2d(x,
                            num_outputs,
                            kernel_size,
                            stride,
                            weights_initializer=custom_init)


num_outputs = 2
x = tf.constant(np.random.randn(1, 2, 2, 1), dtype=tf.float32)
print("x=", x)
# `tf.layers.dense` flattens the input tensor if the rank > 2 and reshapes it back to the original rank
# as the output.
dense_out = tf.layers.dense(x, num_outputs, weights_initializer=custom_init)
conv_out = conv_1x1(x, num_outputs)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    a = sess.run(dense_out)
    b = sess.run(conv_out)
    print("Dense Output =", a)
    print("Conv 1x1 Output =", b)

    print("Same output? =", np.allclose(a, b, atol=1.e-5))
Beispiel #3
0
import oldtensorflow as tf
import numpy as np


def upsample(x):
    """
    Apply a two times upsample on x and return the result.
    :x: 4-Rank Tensor
    :return: TF Operation
    """
    # TODO: Use `tf.layers.conv2d_transpose`
    return tf.layers.conv2d_transpose(x, 3, [2, 2], [2, 2])


x = tf.constant(np.random.randn(1, 4, 4, 3), dtype=tf.float32)
conv = upsample(x)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    result = sess.run(conv)

    print('Input Shape: {}'.format(x.get_shape()))
    print('Output Shape: {}'.format(result.shape))