def histogram_intensity(file): fills = fills_from_file(file, "OML") intensities = [] for nbr in fills: fill = Fill(nbr, fetch=False) fill.fetch() intensities.append(max(fill.intensity().y)) draw_histogram('Intensity for {}'.format(file), intensities, 1e13, "Intensity", "Count")
def comp_blm_ir3_vs_intensity(file): fills = fills_from_file(file, "OML") intensity = [] mean_loss = [] max_loss = [] discarded = 0 for nbr in fills: fill = Fill(nbr, False) fill.fetch() smin, smax = fill.OML_period() ssubset = fill.blm_ir3().y[smin:smax] maxint = max(fill.intensity().y) if maxint < 1.8e14: discarded += 1 continue mean_loss.append(np.mean(ssubset)) max_loss.append(max(ssubset)) intensity.append(maxint) fig = plt.figure() ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122, sharey=ax1) ax1.set_xlabel("Mean momentum (IR3) TCP") ax1.set_ylabel("Intensity") ax1.scatter(mean_loss, intensity, color='b', label='mean') ax1.set_xlim([0, 1.1 * max(mean_loss)]) ax1.set_ylim([1.5e14, 1.1 * max(intensity)]) ax1.legend(loc="lower right") ax2.set_xlabel("Max momentum (IR3) TCP") ax2.set_ylabel("Intensity") ax2.scatter(max_loss, intensity, color='r', label='max') ax2.set_xlim([0, 1.1 * max(max_loss)]) ax2.legend(loc="lower right") percent_used = int( round(float(len(intensity)) / (len(intensity) + discarded) * 100)) fig.suptitle( "Intensity vs OML for {} (only intenities > 1.8e14, {}% of total)\n". format(file, percent_used)) plt.show()
def comp_blm_ir3_vs_abort_gap(file): fills = fills_from_file(file, "OML") abort_gap = [] average_loss = [] max_loss = [] for nbr in fills: fill = Fill(nbr, False) fill.fetch() smin, smax = fill.OML_period() # Only looking until t_co instead -- will not affect max smax = fill.crossover_point()['i'] tmax = fill.blm_ir3().x[smax] tmin = fill.blm_ir3().x[smin] # tmax = find_crossover_point(fill)['t'] ag_average = moving_average(fill.abort_gap().y, 5) agmin = fill.abort_gap().index_for_time(tmin) agmax = fill.abort_gap().index_for_time(tmax) ssubset = fill.blm_ir3().y[smin:smax] average_loss.append(np.average(ssubset)) max_loss.append(max(ssubset)) abort_gap.append(ag_average[agmin] - ag_average[agmax]) fig = plt.figure() ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122, sharey=ax1) # fig1, ax1 = plt.subplots() ax1.set_xlabel("Average BLM") ax1.set_ylabel("∆ abort gap intensity") ax1.scatter(average_loss, abort_gap, color='b', label='average') ax1.set_xlim([0, 1.1 * max(average_loss)]) ax1.set_ylim([0, 1.1 * max(abort_gap)]) xval = [0, 1] slope, intercept, r_value, p_value, std_err = stats.linregress( average_loss, abort_gap) print("Average fit") print( "\tk ={:>10.3E}\n\tm ={:>10.3E}\n\tr ={:>10.7f}\n\tp ={:>10.3E}\n\te^2={:>10.3E}" .format(slope, intercept, r_value, p_value, std_err)) yfit = [slope * x + intercept for x in xval] ax1.plot(xval, yfit, color='gray') ax1.legend(loc="lower right") # fig2, ax2 = plt.subplots() ax2.set_xlabel("Max BLM") ax2.scatter(max_loss, abort_gap, color='r', label='max') ax2.set_xlim([0, 1.1 * max(max_loss)]) ax2.legend(loc="lower right") slope, intercept, r_value, p_value, std_err = stats.linregress( max_loss, abort_gap) print("Max fit") print( "\tk ={:>10.3E}\n\tm ={:>10.3E}\n\tr ={:>10.7f}\n\tp ={:>10.3E}\n\te^2={:>10.3E}" .format(slope, intercept, r_value, p_value, std_err)) yfit = [slope * x + intercept for x in xval] ax2.plot(xval, yfit, color='gray') fig.suptitle( "Correlation between abort gap intensity and BLM signal for TCP in IR3" ) plt.show()