Beispiel #1
0
def chisq4tau(filename, tau_lim=30., delta_tau=0.01, save_npz=True):
	"""
	define array of possible tau values [always symmetric about zero] 
	and impose freqency coupling.
	
	Use these to calculate the chi squared statistic:
	
	X^2(nu,t) = sum_{baselines b} V^xy_b - V^{yx}_b exp(-2 pi i nu tau)
	
	for a sweep of taus; i.e. the x-to-y delay/angle that minimzes Stokes V
	across the array.
	
	Arguments:
	-- tau_lim: sweep of taus runs (-tau_lim, taulim)
	-- delta_tau: spacing of the sweep
	-- save_npz: saves an npz of the chi square for each tau, time and frequency
	
	Returns: an array of chi squared values for every tau, time and frequency.
	The minimum of the tau axis will give the required minimization for V.
	"""
	
	print '==== '+filename+' ===='
	
	dataxy,txy,timingxy,lstxy,flagsxy = omni.importuvs([filename],{'xy':-7}, timingTolerance=1e9, init_mem=.5e9)
	datayx,tyx,timingyx,lstyx,flagsyx = omni.importuvs([filename],{'yx':-8}, timingTolerance=1e9, init_mem=.5e9)
	
	global tau_arr
	global angle_arr
	
	tau_arr = np.arange(-1*tau_lim, tau_lim, delta_tau) #nanseconds
	angle_arr = np.exp(-2*np.pi*1.j*np.outer(nu_arr,tau_arr))
	
	#calculate the chi for each baseline; sum over the array
	chisquared = np.zeros( (tau_arr.shape[0], dataxy.shape[1], nu_arr.shape[0]) ) #tau x time x freq
	 
	###XXX TODO: VECTORIZE THIS BABY
	###XXX update: I get memory errors when I try to create a baseline axis by
	###### outer-producting with angle_arr. How to fix?
	
	print 'Begin stupid tau/bl loop (vectorizing is giving Mem Errs)' 
	for i in range(angle_arr.shape[1]): # for each tau
		calc = 0
		for bl in range(dataxy.shape[3]): #for each baseline
			XY = dataxy[0,:,:,bl]
			YX = datayx[0,:,:,bl]
			calc += pow(np.absolute(XY - YX*angle_arr[:,i]),2.)
		chisquared[i,:,:]=calc
	
	a=filename.split('.')
	a[0]='tau'
	a='.'.join(a)+'.npz'
	
	if save_npz: np.savez(a, chisquared=chisquared, angle=angle_arr, tau=tau_arr)
	return chisquared
import numpy as np
import omnical.calibration_omni as omni
import matplotlib.pyplot as plt
import aipy as ap


paper_uvfiles = ['/data4/paper/2012EoR/psa_live/psa6266/zen.2456266.64714.uvcRREcAC']
omni_uvfiles = ["/data4/paper/2012EoR/psa_live/forlstbinning_omnical_2/zen.2456266.64714.uvcRREcACO"]
info=omni.read_redundantinfo('/data2/home/hz2ug/omnical/doc/redundantinfo_PSA64_ba19_37_50.bin')
nant = 64
wantpols = {}
wantpols['xx'] = ap.miriad.str2pol['xx']

papercal_data, _, _, _ = omni.importuvs(paper_uvfiles, np.concatenate([[[i,j] for i in range(j + 1)] for j in range(nant)]), wantpols, timingTolerance=100)
omnical_data, _, _, _ = omni.importuvs(omni_uvfiles, np.concatenate([[[i,j] for i in range(j + 1)] for j in range(nant)]), wantpols, timingTolerance=100)

omni.omniview(np.array([papercal_data[0,0,120], omnical_data[0,0,120]]), info)
Beispiel #3
0
        elif 'yy' == key:
            pol_select = pol_select + [3]
    rawdata = np.zeros((len(pol_select), np.sum(nTimes), nfreq, nant * (nant + 1) / 2), dtype='complex64')
    timing = []
    lst = []
    for i, uvfile in enumerate(uvfiles):
        rawdata[:, len(timing):len(timing)+nTimes[i]] = np.fromfile(uvfile+'/visibilities', dtype='complex64').reshape((4, nTimes[i], nfreq, nant * (nant + 1) / 2))[pol_select]
        with open(uvfile.replace('.odf', '.odfa') + '/timing.dat') as f:
            for l in f.readlines():
                sa.date = l.replace('\n','')
                sa.date += ephem.second * 3600 * 4
                lst += [sa.sidereal_time()]
                timing += [sa.date.__str__()]
else:
    if len(uvfiles) == 1:
        rawdata, t, timing, lst, rawflag = omni.importuvs(uvfiles, wantpols, totalVisibilityId = np.concatenate([[[i,j] for i in range(j + 1)] for j in range(len(aa))]), timingTolerance=100)#, nTotalAntenna = len(aa))
    else:

        for p, pol in enumerate(wantpols.keys()):
            if p == 0:
                rawdata, t, timing, lst, rawflag = omni.importuvs([uvfiles_dic[pol]], {pol:wantpols[pol]}, totalVisibilityId = np.concatenate([[[i,j] for i in range(j + 1)] for j in range(len(aa))]), timingTolerance=100)
            else:
                tmpdata, t, timing, lst, tmpflag = omni.importuvs([uvfiles_dic[pol]], {pol:wantpols[pol]}, totalVisibilityId = np.concatenate([[[i,j] for i in range(j + 1)] for j in range(len(aa))]), timingTolerance=100)
                rawdata = np.concatenate((rawdata, tmpdata))
    print FILENAME + " MSG:",  len(t), "slices read."
    sys.stdout.flush()

sun = ephem.Sun()
sunpos  = np.zeros((len(timing), 2))
southern_points = {'hyd':{'ra': '09:18:05.7', 'dec': '-12:05:44'},
'cen':{'ra': '13:25:27.6', 'dec': '-43:01:09'},
uv=ap.miriad.UV(uvfiles[0])
nfreq = uv.nchan;
nant = uv['nants'] / 2 # 'nants' counting ant-pols, so divide 2
startfreq = uv['sfreq']
dfreq = uv['sdf']
del(uv)

####create redundant calibrators################
#calibrators = [omni.RedundantCalibrator(nant, info = infopaths[key]) for key in wantpols.keys()]
calibrators = [omni.RedundantCalibrator(nant) for key in wantpols.keys()]
for calibrator, key in zip(calibrators, wantpols.keys()):
	calibrator.compute_redundantinfo(arrayinfoPath = arrayinfos[key])
	#calibrator.write_redundantinfo(infoPath = './redundantinfo_test_' + key + '.txt', overwrite = True)
###start reading miriads################
##print FILENAME + " MSG:",  len(uvfiles), "uv files to be processed for " + ano
data, t, timing, lst = omni.importuvs(uvfiles, calibrators[0].totalVisibilityId, wantpols, nTotalAntenna = 32,timingTolerance = 2*math.pi, init_mem = 5.e7)
##print FILENAME + " MSG:",  len(t), "slices read."

###raw calibration################
if needrawcal:
	for p, key in zip(range(len(wantpols)), wantpols.keys()):
		rawcalpar = np.fromfile(rawpaths[key], dtype="complex64").reshape(nfreq, nant)
		data[p] = omni.apply_calpar(data[p], rawcalpar, calibrators[p].totalVisibilityId)

#####Save various files read################
###np.savetxt('miriadextract_' + ano + "_sunpos.dat", sunpos[:len(t)], fmt='%8.5f')
##f = open(oppath + 'miriadextract_' + ano + "_localtime.dat",'w')
##for time in timing:
	##f.write("%s\n"%time)
##f.close()
##f = open(oppath + 'miriadextract_' + ano + "_lsthour.dat",'w')
            badUBLpair.append([aa.ant_layout[0, 0], aa.ant_layout[r, c]])
        badUBLpair.append([aa.ant_layout[-1, 0], aa.ant_layout[r, c]])

badAntenna_x = [8, 14, 15, 16, 26, 27, 28, 34, 37, 38, 42, 46, 50, 53, 72, 74, 82, 84, 85, 110]
badAntenna_y = [3, 7, 15, 16, 23, 26, 27, 34, 38, 46, 50, 56, 57, 72, 100]
badAntenna = sorted(np.unique(badAntenna_x + badAntenna_y).tolist())
rc.compute_redundantinfo(badAntenna=badAntenna, badUBLpair=badUBLpair, antennaLocationTolerance=.3)

##start reading data
rawdata = {}
rawflag = {}

for p, pol in enumerate(['xx', 'yy']):
    data_list = glob.glob(datadir+'*.%s.uv'%pol)
    print len(data_list)
    rawdata[pol], t, timing, raw_lst, rawflag[pol] = omni.importuvs(data_list, {pol: ap.miriad.str2pol[pol]}, totalVisibilityId=rc.Info.totalVisibilityId[rc.Info.subsetbl[rc.Info.crossindex]], timingTolerance=0.001)
    #reorder and sort lst
    rawdata[pol] = rawdata[pol][:, np.argsort(raw_lst)]
    rawflag[pol] = rawflag[pol][:, np.argsort(raw_lst)]
    raw_lst = sorted(raw_lst)
    plt.plot(raw_lst)
plt.show()


nf = rawdata['xx'].shape[2]
nbl = rawdata['xx'].shape[3]
uv = ap.miriad.UV(data_list[0])
freqs = (uv['freq'] + np.arange(nf) * uv['sdf']) * 1.e3

t_chunks = len(raw_lst) / t_avg
lst = np.mean(np.array(raw_lst)[:t_chunks * t_avg].reshape((t_chunks, t_avg)), axis=-1)
Beispiel #6
0
sa = ephem.Observer()
sa.lon = uv['longitu']
sa.lat = uv['latitud']
sa.pressure = 0
startfreq = uv['sfreq']
dfreq = uv['sdf']
del (uv)
print "Done."
sys.stdout.flush()

###start reading miriads################
print FILENAME + " MSG:", len(uvfiles), "uv files to be processed"
sys.stdout.flush()
rawdata, t, timing, lst = omni.importuvs(
    uvfiles,
    np.concatenate([[[i, j] for i in range(j + 1)] for j in range(len(aa))]),
    wantpols,
    timingTolerance=100)  #, nTotalAntenna = len(aa))
print FILENAME + " MSG:", len(t), "slices read."
sys.stdout.flush()

sun = ephem.Sun()
sunpos = np.zeros((len(timing), 2))
southern_points = {
    'hyd': {
        'ra': '09:18:05.7',
        'dec': '-12:05:44'
    },
    'cen': {
        'ra': '13:25:27.6',
        'dec': '-43:01:09'
Beispiel #7
0
import numpy as np
import omnical.calibration_omni as omni
import matplotlib.pyplot as plt
import aipy as ap

paper_uvfiles = [
    '/data4/paper/2012EoR/psa_live/psa6266/zen.2456266.64714.uvcRREcAC'
]
omni_uvfiles = [
    "/data4/paper/2012EoR/psa_live/forlstbinning_omnical_2/zen.2456266.64714.uvcRREcACO"
]
info = omni.read_redundantinfo(
    '/data2/home/hz2ug/omnical/doc/redundantinfo_PSA64_ba19_37_50.bin')
nant = 64
wantpols = {}
wantpols['xx'] = ap.miriad.str2pol['xx']

papercal_data, _, _, _, rawflag = omni.importuvs(paper_uvfiles,
                                                 wantpols,
                                                 timingTolerance=100)
omnical_data, _, _, _, rawflag = omni.importuvs(omni_uvfiles,
                                                wantpols,
                                                timingTolerance=100)

data = omni.omniview(
    np.array([papercal_data[0, 0, 120], omnical_data[0, 0, 120]]), info)

np.savez('/data2/home/zakiali/jeff_psa64/omniview.npz', data)
Beispiel #8
0
    def test_all(self):
        ##FILENAME = "test.py"
        ######################################################################
        ##############Config parameters###################################
        ######################################################################
        ano = 'test'##This is the file name difference for final calibration parameter result file. Result will be saved in miriadextract_xx_ano.omnical
        uvfiles = [os.path.dirname(os.path.realpath(__file__)) + '/test.uv']
        wantpols = {'xx':-5}#, 'yy':-6}

        #infopaths = {'xx':os.path.dirname(os.path.realpath(__file__)) + '/../doc/redundantinfo_PSA32.txt', 'yy':os.path.dirname(os.path.realpath(__file__)) + '/../doc/redundantinfo_PSA32.txt'}
        arrayinfos = {'xx':os.path.dirname(os.path.realpath(__file__)) + '/../doc/arrayinfo_apprx_PAPER32_badUBLpair.txt', 'yy':os.path.dirname(os.path.realpath(__file__)) + '/../doc/arrayinfo_apprx_PAPER32_badUBLpair.txt'}

        oppath = os.path.dirname(os.path.realpath(__file__)) + '/results/'
        if not os.path.isdir(oppath):
            os.makedirs(oppath)
        removedegen = True
        removeadditive = False

        needrawcal = True #if true, (generally true for raw data) you need to take care of having raw calibration parameters in float32 binary format freq x nant
        rawpaths = {'xx':os.path.dirname(os.path.realpath(__file__)) + "/testrawphasecalparrad_xx", 'yy':os.path.dirname(os.path.realpath(__file__)) + "/testrawphasecalparrad_yy"}



        keep_binary_data = True
        keep_binary_calpar = True


        converge_percent = 0.000001
        max_iter = 1000
        step_size = .3

        ######################################################################
        ######################################################################
        ######################################################################

        ########Massage user parameters###################################
        oppath += '/'


        ####get some info from the first uvfile   ################
        uv=ap.miriad.UV(uvfiles[0])
        nfreq = uv.nchan;
        nant = uv['nants'] / 2 # 'nants' counting ant-pols, so divide 2
        startfreq = uv['sfreq']
        dfreq = uv['sdf']
        del(uv)

        ####create redundant calibrators################
        #calibrators = [omni.RedundantCalibrator(nant, info = infopaths[key]) for key in wantpols.keys()]
        calibrators = [omni.RedundantCalibrator(nant) for key in wantpols.keys()]
        for calibrator, key in zip(calibrators, wantpols.keys()):
            calibrator.compute_redundantinfo(arrayinfoPath = arrayinfos[key])
            #calibrator.write_redundantinfo(infoPath = './redundantinfo_test_' + key + '.txt', overwrite = True)
        ###start reading miriads################
        ##print FILENAME + " MSG:",  len(uvfiles), "uv files to be processed for " + ano
        data, t, timing, lst = omni.importuvs(uvfiles, calibrators[0].totalVisibilityId, wantpols, nTotalAntenna = 32,timingTolerance = 2*math.pi, init_mem = 5.e7)
        ##print FILENAME + " MSG:",  len(t), "slices read."

        ###raw calibration################
        if needrawcal:
            for p, key in zip(range(len(wantpols)), wantpols.keys()):
                rawcalpar = np.fromfile(rawpaths[key], dtype="complex64").reshape(nfreq, nant)
                data[p] = omni.apply_calpar(data[p], rawcalpar, calibrators[p].totalVisibilityId)

        #####Save various files read################
        ###np.savetxt('miriadextract_' + ano + "_sunpos.dat", sunpos[:len(t)], fmt='%8.5f')
        ##f = open(oppath + 'miriadextract_' + ano + "_localtime.dat",'w')
        ##for time in timing:
            ##f.write("%s\n"%time)
        ##f.close()
        ##f = open(oppath + 'miriadextract_' + ano + "_lsthour.dat",'w')
        ##for l in lst:
            ##f.write("%s\n"%l)
        ##f.close()


        ####calibrate################
        ##print FILENAME + " MSG: starting calibration."
        for p, calibrator in zip(range(len(wantpols)), calibrators):
            calibrator.removeDegeneracy = removedegen
            calibrator.removeAdditive = removeadditive
            calibrator.keepData = keep_binary_data
            calibrator.keepCalpar = keep_binary_calpar
            calibrator.convergePercent = converge_percent
            calibrator.maxIteration = max_iter
            calibrator.stepSize = step_size
            calibrator.computeUBLFit = False


            calibrator.logcal(data[p], np.zeros_like(data[p]), verbose=True)
            calibrator.lincal(data[p], np.zeros_like(data[p]), verbose=True)

            calibrator.utctimes = timing
            calibrator.get_calibrated_data(data[p])
            calibrator.get_omnichisq()
            calibrator.get_omnigain()
            calibrator.get_omnifit()

        #########Test results############
        correctresult = np.fromfile(os.path.dirname(os.path.realpath(__file__)) + '/test.omnical', dtype = 'float32').reshape(14,203,165)[:,:,:3+2*nant]
        nanmask = ~np.isnan(np.sum(correctresult,axis=2))#mask the last dimension because when data contains some 0 and some -0, C++ code return various phasecalibration parameters on different systems, when all other numbers are nan. I do the summation to avoid it failing the euqality check when the input is trivially 0s.

        newresult = calibrators[-1].rawCalpar[:,:,:3+2*nant]#[:,:,3:]

        #calibrators[-1].rawCalpar.tofile(os.path.dirname(os.path.realpath(__file__)) + '/test.omnical')
        np.testing.assert_almost_equal(correctresult[nanmask], newresult[nanmask])#decimal=
Beispiel #9
0
    lst = []
    for i, uvfile in enumerate(uvfiles):
        rawdata[:, len(timing):len(timing) + nTimes[i]] = np.fromfile(
            uvfile + '/visibilities', dtype='complex64').reshape(
                (4, nTimes[i], nfreq, nant * (nant + 1) / 2))[pol_select]
        with open(uvfile.replace('.odf', '.odfa') + '/timing.dat') as f:
            for l in f.readlines():
                sa.date = l.replace('\n', '')
                sa.date += ephem.second * 3600 * 4
                lst += [sa.sidereal_time()]
                timing += [sa.date.__str__()]
else:
    if len(uvfiles) == 1:
        rawdata, t, timing, lst, rawflag = omni.importuvs(
            uvfiles,
            wantpols,
            totalVisibilityId=np.concatenate([[[i, j] for i in range(j + 1)]
                                              for j in range(len(aa))]),
            timingTolerance=100)  #, nTotalAntenna = len(aa))
    else:

        for p, pol in enumerate(wantpols.keys()):
            if p == 0:
                rawdata, t, timing, lst, rawflag = omni.importuvs(
                    [uvfiles_dic[pol]], {pol: wantpols[pol]},
                    totalVisibilityId=np.concatenate([[[i, j]
                                                       for i in range(j + 1)]
                                                      for j in range(len(aa))
                                                      ]),
                    timingTolerance=100)
            else:
                tmpdata, t, timing, lst, tmpflag = omni.importuvs(
Beispiel #10
0
sa.lon = aa.lon
sa.lat = aa.lat
startfreq = uv['sfreq']#GHz
dfreq = uv['sdf']#GHz
wantpols = {}
for pol in omni.get_uv_pols(uv):
    wantpols[pol] = ap.miriad.str2pol[pol]
del(uv)
print "Done."
sys.stdout.flush()


#######import data file###########################
print FILENAME + " MSG:",  len(uvfiles), "uv files to be processed for " + ano
sys.stdout.flush()
data, jd, timing, lst, rawflag = omni.importuvs(uvfiles, wantpols, totalVisibilityId = np.concatenate([[[i,j] for i in range(j + 1)] for j in range(len(aa))]), timingTolerance=100, init_mem=init_mem, lat = sa.lat, lon=sa.lon)#, nTotalAntenna = len(aa))
if delay_compression > len(jd) / len(uvfiles):
    raise ValueError("Desired time bins %i is larger than input stamp count per uvfile."%len(jd))

data[rawflag] = 0
print FILENAME + " MSG:",  len(jd), "slices read. data shape: ", data.shape
sys.stdout.flush()


########compress###########################
compr_shape = list(data.shape)
compr_shape[1] = len(uvfiles) * delay_compression
compressed_data = np.zeros(compr_shape, dtype=data.dtype)
compr_flags = np.zeros(compr_shape, dtype='bool')
compr_error = np.zeros((compr_shape[0], compr_shape[2], compr_shape[-1]), dtype='float32')
for p, pol in enumerate(wantpols.keys()):
Beispiel #11
0
import matplotlib.pyplot as plt
import aipy as ap

paper_uvfiles = [
    '/data4/paper/2012EoR/psa_live/psa6266/zen.2456266.64714.uvcRREcAC'
]
omni_uvfiles = [
    "/data4/paper/2012EoR/psa_live/forlstbinning_omnical_2/zen.2456266.64714.uvcRREcACO"
]
info = omni.read_redundantinfo(
    '/data2/home/hz2ug/omnical/doc/redundantinfo_PSA64_ba19_37_50.bin')
nant = 64
wantpols = {}
wantpols['xx'] = ap.miriad.str2pol['xx']

papercal_data, _, _, _ = omni.importuvs(paper_uvfiles,
                                        np.concatenate([[[i, j]
                                                         for i in range(j + 1)]
                                                        for j in range(nant)]),
                                        wantpols,
                                        timingTolerance=100)
omnical_data, _, _, _ = omni.importuvs(omni_uvfiles,
                                       np.concatenate([[[i, j]
                                                        for i in range(j + 1)]
                                                       for j in range(nant)]),
                                       wantpols,
                                       timingTolerance=100)

omni.omniview(np.array([papercal_data[0, 0, 120], omnical_data[0, 0, 120]]),
              info)
Beispiel #12
0
sa.lon = uv['longitu']
sa.lat = uv['latitud']
sa.pressure = 0
startfreq = uv['sfreq']
dfreq = uv['sdf']
del(uv)
print "Done."
sys.stdout.flush()




###start reading miriads################
print FILENAME + " MSG:",  len(uvfiles), "uv files to be processed"
sys.stdout.flush()
rawdata, t, timing, lst = omni.importuvs(uvfiles, np.concatenate([[[i,j] for i in range(j + 1)] for j in range(len(aa))]), wantpols, timingTolerance=100)#, nTotalAntenna = len(aa))
print FILENAME + " MSG:",  len(t), "slices read."
sys.stdout.flush()

sun = ephem.Sun()
sunpos  = np.zeros((len(timing), 2))
southern_points = {'hyd':{'ra': '09:18:05.7', 'dec': '-12:05:44'},
'cen':{'ra': '13:25:27.6', 'dec': '-43:01:09'},
'cyg':{'ra': '19:59:28.3', 'dec': '40:44:02'},
'pic':{'ra': '05:19:49.7', 'dec': '-45:46:44'},
'vir':{'ra': '12:30:49.4', 'dec': '12:23:28'},
'for':{'ra': '03:22:41.7', 'dec': '-37:12:30'}}

for source in southern_points.keys():
	southern_points[source]['body'] = ephem.FixedBody()
	southern_points[source]['body']._ra = southern_points[source]['ra']
Beispiel #13
0
import numpy as np
import omnical.calibration_omni as omni
import matplotlib.pyplot as plt
import aipy as ap


paper_uvfiles = ['/data4/paper/2012EoR/psa_live/psa6266/zen.2456266.64714.uvcRREcAC']
omni_uvfiles = ["/data4/paper/2012EoR/psa_live/forlstbinning_omnical_2/zen.2456266.64714.uvcRREcACO"]
info=omni.read_redundantinfo('/data2/home/hz2ug/omnical/doc/redundantinfo_PSA64_ba19_37_50.bin')
nant = 64
wantpols = {}
wantpols['xx'] = ap.miriad.str2pol['xx']

papercal_data, _, _, _, rawflag = omni.importuvs(paper_uvfiles, wantpols, timingTolerance=100)
omnical_data, _, _, _, rawflag = omni.importuvs(omni_uvfiles, wantpols, timingTolerance=100)

data = omni.omniview(np.array([papercal_data[0,0,120], omnical_data[0,0,120]]), info)

np.savez('/data2/home/zakiali/jeff_psa64/omniview.npz', data)
Beispiel #14
0
def chisq4tau(filename, tau_lim=30., delta_tau=0.01, save_npz=True):
    """
	define array of possible tau values [always symmetric about zero] 
	and impose freqency coupling.
	
	Use these to calculate the chi squared statistic:
	
	X^2(nu,t) = sum_{baselines b} V^xy_b - V^{yx}_b exp(-2 pi i nu tau)
	
	for a sweep of taus; i.e. the x-to-y delay/angle that minimzes Stokes V
	across the array.
	
	Arguments:
	-- tau_lim: sweep of taus runs (-tau_lim, taulim)
	-- delta_tau: spacing of the sweep
	-- save_npz: saves an npz of the chi square for each tau, time and frequency
	
	Returns: an array of chi squared values for every tau, time and frequency.
	The minimum of the tau axis will give the required minimization for V.
	"""

    print '==== ' + filename + ' ===='

    dataxy, txy, timingxy, lstxy, flagsxy = omni.importuvs([filename],
                                                           {'xy': -7},
                                                           timingTolerance=1e9,
                                                           init_mem=.5e9)
    datayx, tyx, timingyx, lstyx, flagsyx = omni.importuvs([filename],
                                                           {'yx': -8},
                                                           timingTolerance=1e9,
                                                           init_mem=.5e9)

    global tau_arr
    global angle_arr

    tau_arr = np.arange(-1 * tau_lim, tau_lim, delta_tau)  #nanseconds
    angle_arr = np.exp(-2 * np.pi * 1.j * np.outer(nu_arr, tau_arr))

    #calculate the chi for each baseline; sum over the array
    chisquared = np.zeros((tau_arr.shape[0], dataxy.shape[1],
                           nu_arr.shape[0]))  #tau x time x freq

    ###XXX TODO: VECTORIZE THIS BABY
    ###XXX update: I get memory errors when I try to create a baseline axis by
    ###### outer-producting with angle_arr. How to fix?

    print 'Begin stupid tau/bl loop (vectorizing is giving Mem Errs)'
    for i in range(angle_arr.shape[1]):  # for each tau
        calc = 0
        for bl in range(dataxy.shape[3]):  #for each baseline
            XY = dataxy[0, :, :, bl]
            YX = datayx[0, :, :, bl]
            calc += pow(np.absolute(XY - YX * angle_arr[:, i]), 2.)
        chisquared[i, :, :] = calc

    a = filename.split('.')
    a[0] = 'tau'
    a = '.'.join(a) + '.npz'

    if save_npz:
        np.savez(a, chisquared=chisquared, angle=angle_arr, tau=tau_arr)
    return chisquared
Beispiel #15
0
    def test_all(self):
        ##FILENAME = "test.py"
        ######################################################################
        ##############Config parameters###################################
        ######################################################################
        ano = 'test'  ##This is the file name difference for final calibration parameter result file. Result will be saved in miriadextract_xx_ano.omnical
        uvfiles = [os.path.dirname(os.path.realpath(__file__)) + '/test.uv']
        wantpols = {'xx': -5}  #, 'yy':-6}

        #infopaths = {'xx':os.path.dirname(os.path.realpath(__file__)) + '/../doc/redundantinfo_PSA32.txt', 'yy':os.path.dirname(os.path.realpath(__file__)) + '/../doc/redundantinfo_PSA32.txt'}
        arrayinfos = {
            'xx':
            os.path.dirname(os.path.realpath(__file__)) +
            '/../doc/arrayinfo_apprx_PAPER32_badUBLpair.txt',
            'yy':
            os.path.dirname(os.path.realpath(__file__)) +
            '/../doc/arrayinfo_apprx_PAPER32_badUBLpair.txt'
        }

        oppath = os.path.dirname(os.path.realpath(__file__)) + '/results/'
        if not os.path.isdir(oppath):
            os.makedirs(oppath)
        removedegen = True
        removeadditive = False

        needrawcal = True  #if true, (generally true for raw data) you need to take care of having raw calibration parameters in float32 binary format freq x nant
        rawpaths = {
            'xx':
            os.path.dirname(os.path.realpath(__file__)) +
            "/testrawphasecalparrad_xx",
            'yy':
            os.path.dirname(os.path.realpath(__file__)) +
            "/testrawphasecalparrad_yy"
        }

        keep_binary_data = True
        keep_binary_calpar = True

        converge_percent = 0.000001
        max_iter = 1000
        step_size = .3

        ######################################################################
        ######################################################################
        ######################################################################

        ########Massage user parameters###################################
        oppath += '/'

        ####get some info from the first uvfile   ################
        uv = ap.miriad.UV(uvfiles[0])
        nfreq = uv.nchan
        nant = uv['nants'] / 2  # 'nants' counting ant-pols, so divide 2
        startfreq = uv['sfreq']
        dfreq = uv['sdf']
        del (uv)

        ####create redundant calibrators################
        #calibrators = [omni.RedundantCalibrator(nant, info = infopaths[key]) for key in wantpols.keys()]
        calibrators = [
            omni.RedundantCalibrator(nant) for key in wantpols.keys()
        ]
        for calibrator, key in zip(calibrators, wantpols.keys()):
            calibrator.compute_redundantinfo(arrayinfoPath=arrayinfos[key])
            #calibrator.write_redundantinfo(infoPath = './redundantinfo_test_' + key + '.txt', overwrite = True)
        ###start reading miriads################
        ##print FILENAME + " MSG:",  len(uvfiles), "uv files to be processed for " + ano
        data, t, timing, lst = omni.importuvs(uvfiles,
                                              calibrators[0].totalVisibilityId,
                                              wantpols,
                                              nTotalAntenna=32,
                                              timingTolerance=2 * math.pi,
                                              init_mem=5.e7)
        ##print FILENAME + " MSG:",  len(t), "slices read."

        ###raw calibration################
        if needrawcal:
            for p, key in zip(range(len(wantpols)), wantpols.keys()):
                rawcalpar = np.fromfile(rawpaths[key],
                                        dtype="complex64").reshape(
                                            nfreq, nant)
                data[p] = omni.apply_calpar(data[p], rawcalpar,
                                            calibrators[p].totalVisibilityId)

        #####Save various files read################
        ###np.savetxt('miriadextract_' + ano + "_sunpos.dat", sunpos[:len(t)], fmt='%8.5f')
        ##f = open(oppath + 'miriadextract_' + ano + "_localtime.dat",'w')
        ##for time in timing:
        ##f.write("%s\n"%time)
        ##f.close()
        ##f = open(oppath + 'miriadextract_' + ano + "_lsthour.dat",'w')
        ##for l in lst:
        ##f.write("%s\n"%l)
        ##f.close()

        ####calibrate################
        ##print FILENAME + " MSG: starting calibration."
        for p, calibrator in zip(range(len(wantpols)), calibrators):
            calibrator.removeDegeneracy = removedegen
            calibrator.removeAdditive = removeadditive
            calibrator.keepData = keep_binary_data
            calibrator.keepCalpar = keep_binary_calpar
            calibrator.convergePercent = converge_percent
            calibrator.maxIteration = max_iter
            calibrator.stepSize = step_size
            calibrator.computeUBLFit = False

            calibrator.logcal(data[p], np.zeros_like(data[p]), verbose=False)
            additiveout = calibrator.lincal(data[p],
                                            np.zeros_like(data[p]),
                                            verbose=False)

            calibrator.utctimes = timing
            calibrator.get_calibrated_data(data[p])
            calibrator.get_omnichisq()
            calibrator.get_omnigain()
            calibrator.get_omnifit()

        #########Test results############
        correctresult = np.fromfile(
            os.path.dirname(os.path.realpath(__file__)) + '/test.omnical',
            dtype='float32').reshape(14, 203, 165)[:, :, :]
        nanmask = ~np.isnan(
            np.sum(correctresult, axis=2)
        )  #mask the last dimension because when data contains some 0 and some -0, C++ code return various phasecalibration parameters on different systems, when all other numbers are nan. I do the summation to avoid it failing the euqality check when the input is trivially 0s.
        calibrators[-1].rawCalpar.tofile(
            os.path.dirname(os.path.realpath(__file__)) +
            '/results/new_result.omnical')
        omni.write_redundantinfo(calibrators[-1].Info.get_info(),
                                 os.path.dirname(os.path.realpath(__file__)) +
                                 '/results/new_info.bin',
                                 overwrite=True)
        newresult = calibrators[-1].rawCalpar[:, :, :]
        np.testing.assert_almost_equal(correctresult[:, :, 1:3][nanmask],
                                       newresult[:, :, 1:3][nanmask],
                                       decimal=5)
        np.testing.assert_almost_equal(np.sum(
            np.abs(data[-1] - calibrators[-1].get_modeled_data())
            [:, :,
             calibrators[-1].Info.subsetbl[calibrators[-1].Info.crossindex]]**
            2,
            axis=2)[nanmask],
                                       newresult[:, :, 2][nanmask],
                                       decimal=5)
        np.testing.assert_almost_equal(np.sum(
            np.abs(additiveout)[:, :, calibrators[-1].Info.crossindex]**2,
            axis=2)[nanmask],
                                       newresult[:, :, 2][nanmask],
                                       decimal=5)
        np.testing.assert_almost_equal(correctresult[:, :, 3:67][nanmask],
                                       newresult[:, :, 3:67][nanmask],
                                       decimal=5)
        np.testing.assert_almost_equal(
            np.sort(np.abs(correctresult[:, :, 67:][nanmask])),
            np.sort(np.abs(newresult[:, :, 67:][nanmask])),
            decimal=5)
Beispiel #16
0
dfreq = uv['sdf']  #GHz
wantpols = {}
for pol in omni.get_uv_pols(uv):
    wantpols[pol] = ap.miriad.str2pol[pol]
del (uv)
print "Done."
sys.stdout.flush()

#######import data file###########################
print FILENAME + " MSG:", len(uvfiles), "uv files to be processed for " + ano
sys.stdout.flush()
data, jd, timing, lst, rawflag = omni.importuvs(
    uvfiles,
    wantpols,
    totalVisibilityId=np.concatenate([[[i, j] for i in range(j + 1)]
                                      for j in range(len(aa))]),
    timingTolerance=100,
    init_mem=init_mem,
    lat=sa.lat,
    lon=sa.lon)  #, nTotalAntenna = len(aa))
if delay_compression > len(jd) / len(uvfiles):
    raise ValueError(
        "Desired time bins %i is larger than input stamp count per uvfile." %
        len(jd))

data[rawflag] = 0
print FILENAME + " MSG:", len(jd), "slices read. data shape: ", data.shape
sys.stdout.flush()

########compress###########################
compr_shape = list(data.shape)