def test_nn_functional_interpolate_nearest_date_format():
    """
    api: paddle.nn.functional.interpolate
    op version: 11
    """
    op = Net(size=[4, 12], data_format='NHWC')
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'nn_functional_interpolate', [11])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [2, 2, 2, 10]).astype('float32')))
    obj.run()
def test_nn_functional_interpolate_bicubic_align_corners():
    """
    api: paddle.nn.functional.interpolate
    op version: 11
    """
    op = Net(mode='bicubic', scale_factor=1.5, align_corners=True)
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'nn_functional_interpolate', [11])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [1, 2, 2, 5]).astype('float32')))
    obj.run()
Beispiel #3
0
def test_AdaptiveAvgPool1D_base():
    """
    api: paddle.nn.AdaptiveAvgPool1D
    op version: 9, 10, 11, 12
    """
    op = Net()
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'nn_AdaptiveAvgPool1D', [9, 10, 11, 12])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [3, 1, 10]).astype('float32')))
    obj.run()
def test_LayerNorm_11():
    """
    api: paddle.nn.LayerNorm
    op version: 11
    """
    op = Net()
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'nn_LayerNorm', [11])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [3, 1, 10, 10]).astype('float32')))
    obj.run()
def test_MaxPool2D_base_Padding_0():
    """
    api: paddle.MaxPool2D
    op version: 9, 10, 11, 12
    """
    op = Net(kernel_size=5, padding=[[0, 0], [0, 0], [1, 2], [3, 4]])
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'nn_MaxPool2D', [9, 10, 11, 12])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [3, 1, 10, 10]).astype('float32')))
    obj.run()
Beispiel #6
0
def test_transpose_10():
    """
    api: paddle.transpose
    op version: 10
    """
    op = Net()
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'transpose', [10])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [1, 3, 10]).astype('float32')))
    obj.run()
Beispiel #7
0
def test_Pad1D_replicate():
    """
    api: paddle.nn.Pad1D
    op version: 12
    """
    op = Net(mode='replicate')
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'nn_Pad1D', [12])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [3, 1, 10]).astype('float32')))
    obj.run()
Beispiel #8
0
def test_Conv2D_padding_2_9():
    """
    api: paddle.nn.Conv2D
    op version: 9
    """
    op = Net(padding=[[0, 0], [0, 0], [1, 2], [2, 3]])
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'Conv2D', [9])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [3, 1, 10, 10]).astype('float32')))
    obj.run()
def test_InstanceNorm_base():
    """
    api: paddle.InstanceNorm
    op version: 9, 10, 11, 12
    """
    op = Net()
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'nn_InstanceNorm', [9, 10, 11, 12])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [2, 2, 2, 2, 3]).astype('float32')))
    obj.run()
Beispiel #10
0
def test_avg_pool2d_12():
    """
    api: paddle.nn.functional.avg_pool2d
    op version: 12
    """
    op = Net()
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'avg_pool2d', [12])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [3, 1, 10, 10]).astype('float32')))
    obj.run()
Beispiel #11
0
def test_nn_functional_selu_scale():
    """
    api: paddle.nn.functional.selu
    op version: 12
    """
    op = Net(scale=2)
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'nn.functional.selu', [12])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [3, 3, 3]).astype('float32')))
    obj.run()
Beispiel #12
0
def test_squeeze_9_None():
    """
    api: paddle.squeeze
    op version: 12
    """
    op = Net(axis=None)
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'squeeze', [9, 10, 11, 12, 13])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [1, 3, 10, 1]).astype('float32')))
    obj.run()
def test_Conv3DTranspose_padding_1_9_10_11_12():
    """
    api: paddle.Conv3DTranspose
    op version: 9,10,11,12
    """
    op = Net(padding=[1, 2, 3, 4, 5, 6])
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'nn_Conv3DTranspose', [9, 10, 11, 12])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [3, 1, 10, 10, 10]).astype('float32')))
    obj.run()
def test_Conv3DTranspose_output_padding_2_9_10_11_12():
    """
    api: paddle.Conv3DTranspose
    op version: 9,10,11,12
    """
    op = Net(in_channels=16, out_channels=16, stride=3, output_padding=2)
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'nn_Conv3DTranspose', [9, 10, 11, 12])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [3, 16, 10, 10, 10]).astype('float32')))
    obj.run()
Beispiel #15
0
def test_Hardsigmoid_10():
    """
    api: paddle.nn.Hardsigmoid
    op version: 10
    """
    op = Net()
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'nn_Hardsigmoid', [10])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [3, 1, 10, 10]).astype('float32')))
    obj.run()
Beispiel #16
0
def test_GroupNorm_12():
    """
    api: paddle.nn.GroupNorm
    op version: 12
    """
    op = Net()
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'nn_GroupNorm', [12])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [5, 10, 8, 8]).astype('float32')))
    obj.run()
def test_BatchNorm2D_9():
    """
    api: paddle.nn.BatchNorm2D
    op version: 9
    """
    op = Net()
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'nn_BatchNorm2D', [9])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [3, 1, 10, 10]).astype('float32')))
    obj.run()
Beispiel #18
0
def test_Conv2D_dilation_2_9():
    """
    api: paddle.nn.Conv2D
    op version: 9
    """
    op = Net(in_channels=16, out_channels=16, dilation=3)
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'Conv2D', [9])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [3, 16, 10, 10]).astype('float32')))
    obj.run()
def test_Conv1DTranspose_12_Padding_tuple1():
    """
    api: paddle.nn.Conv1DTranspose
    op version: 12
    """
    op = Net(padding=(1, 2))
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'nn_Conv1DTranspose', [9, 10, 11, 12, 13])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [3, 1, 10]).astype('float32')))
    obj.run()
Beispiel #20
0
def test_initializer_Uniform_base():
    """
    api: paddle.initializer.Uniform
    op version: 9
    """
    op = Net()
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'nn_initializer_Uniform', [9, 10, 11, 12])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [3, 1, 2]).astype('float32')))
    obj.run()
Beispiel #21
0
def test_Conv3D_10():
    """
    api: paddle.Conv3D
    op version: 10
    """
    op = Net()
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'Conv2D_Dropout', [10])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [3, 1, 5, 10, 10]).astype('float32')))
    obj.run()
Beispiel #22
0
def test_square_9():
    """
    api: paddle.square
    op version: 9
    """
    op = Net()
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'square', [9])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [3, 3, 3]).astype('float32')))
    obj.run()
Beispiel #23
0
def test_argmin_axis_keepdim():
    """
    api: paddle.argmin
    op version: 12
    """
    op = Net(axis=1, keepdim=True)
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'argmin', [12])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [3, 3, 10]).astype('float32')))
    obj.run()
Beispiel #24
0
def test_neg_12():
    """
    api: paddle.neg
    op version: 12
    """
    op = Net()
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'neg', [12])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [3, 3, 3]).astype('float32')))
    obj.run()
def test_nn_functional_interpolate_nearest_scale_factor_tuple():
    """
    api: paddle.nn.functional.interpolate
    op version: 11
    """
    op = Net(scale_factor=(1, 2))
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'nn_functional_interpolate', [11])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [2, 3, 6, 10]).astype('float32')))
    obj.run()
Beispiel #26
0
def test_argsort_descending_1():
    """
    api: paddle.argsort
    op version: 12
    """
    op = Net(descending=True)
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'argsort', [7])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [3, 3, 10]).astype('float32')))
    obj.run()
def test_Conv2DTranspose_9_output_padding_3():
    """
    api: paddle.Conv2DTranspose
    op version: 9
    """
    op = Net(output_padding=1,
             stride=[3, 2],
             padding=[[0, 0], [0, 0], [1, 2], [2, 3]])
    op.eval()
    # net, name, ver_list, delta=1e-6, rtol=1e-5
    obj = APIOnnx(op, 'nn_Conv2DTranspose', [9])
    obj.set_input_data(
        "input_data",
        paddle.to_tensor(
            randtool("float", -1, 1, [3, 1, 10, 10]).astype('float32')))
    obj.run()
 def generator_data():
     input_data = randtool("int", 0, 10, input2_shape)
     return input_data
Beispiel #29
0
    def run_test(self, configs):
        config, models = configs
        logging.info("Run configs: {}".format(config))

        assert "op_names" in config.keys(
        ), "config must include op_names in dict keys"
        assert "test_data_shapes" in config.keys(
        ), "config must include test_data_shapes in dict keys"
        assert "test_data_types" in config.keys(
        ), "config must include test_data_types in dict keys"
        assert "opset_version" in config.keys(
        ), "config must include opset_version in dict keys"
        assert "input_spec_shape" in config.keys(
        ), "config must include input_spec_shape in dict keys"

        op_names = config["op_names"]
        test_data_shapes = config["test_data_shapes"]
        test_data_types = config["test_data_types"]
        opset_version = config["opset_version"]
        input_specs = config["input_spec_shape"]

        use_gpu = True
        if "use_gpu" in config.keys():
            use_gpu = config["use_gpu"]

        self.num_ran_models += 1

        if not isinstance(models, (tuple, list)):
            models = [models]
        if not isinstance(op_names, (tuple, list)):
            op_names = [op_names]
        if not isinstance(opset_version[0], (tuple, list)):
            opset_version = [opset_version]
        if len(opset_version) == 1 and len(models) != len(opset_version):
            opset_version = opset_version * len(models)

        assert len(models) == len(
            op_names), "Length of models should be equal to length of op_names"

        input_type_list = None
        if len(test_data_types) > 1:
            input_type_list = list(product(*test_data_types))
        elif len(test_data_types) == 1:
            if isinstance(test_data_types[0], str):
                input_type_list = [test_data_types[0]]
            else:
                input_type_list = test_data_types
        elif len(test_data_types) == 0:
            input_type_list = [["float32"] * len(test_data_shapes)]

        delta = 1e-5
        rtol = 1e-5
        if "delta" in config.keys():
            delta = config["delta"]
        if "rtol" in config.keys():
            rtol = config["rtol"]

        for i, model in enumerate(models):
            model.eval()
            obj = APIOnnx(model, op_names[i], opset_version[i], op_names[i],
                          input_specs, delta, rtol, use_gpu)
            for input_type in input_type_list:
                input_tensors = list()
                for j, shape in enumerate(test_data_shapes):
                    # Determine whether it is a user-defined data generation function
                    if isfunction(shape):
                        data = shape()
                        data = data.astype(input_type[j])
                        input_tensors.append(paddle.to_tensor(data))
                        continue
                    if input_type[j].count('int') > 0:
                        input_tensors.append(
                            paddle.to_tensor(
                                randtool("int", -20, 20,
                                         shape).astype(input_type[j])))
                    elif input_type[j].count('bool') > 0:
                        input_tensors.append(
                            paddle.to_tensor(
                                randtool("bool", -2, 2,
                                         shape).astype(input_type[j])))
                    else:
                        input_tensors.append(
                            paddle.to_tensor(
                                randtool("float", -2, 2,
                                         shape).astype(input_type[j])))
                obj.set_input_data("input_data", tuple(input_tensors))
                logging.info("Now Run >>> dtype: {}, op_name: {}".format(
                    input_type, op_names[i]))
                obj.run()
            if len(input_type_list) == 0:
                obj.run()
        logging.info("Run Successfully!")
 def generator3_data():
     input_data3 = randtool("int", 1, 10, [input_shape[2]])
     return input_data3