Beispiel #1
0
def timeofflight(xhat0):
	"""
	Computes time of flight for xhat0 on the Poincare section to come back onto
	the section for a second time 
	"""
	#Find the point on the computed poincare section, closest to the x0
	imin = np.argmin(np.linalg.norm(ps[:,1:5]-xhat0, axis=1))
	#Take its time of flight as
	if imin < np.size(ps,0)-1: 
		Tapproximate = ps[imin+1,0]-ps[imin,0]
	else:
		Tapproximate = ps[imin,0]-ps[imin-1,0]
	print "Tapproximate:"
	print Tapproximate
	#Integrate for a little bit longer than the approximated integration time:
	stoptime = 1.2*Tapproximate
	numpoints = int(stoptime/0.01)
	#Integration time array:
	t = [stoptime * float(i) / (numpoints - 1) for i in range(numpoints)]
	xhatphi0 = np.append(xhat0, np.array([0], float))
	xhatsol = onslicesolver.integrate(xhatphi0, pars, t, abserror=1.0e-14, relerror=1.0e-12)
	tx = np.append(np.array([t], float).transpose(), xhatsol, axis=1)
	#Compute Poincare section:
	psreturn=psectslice.computeps(tx, sectp, nhat, direction,  p=pars)
	print "psreturn:"
	print psreturn
	#Take the time nearest to the approximated time. This is due to the
	#fact that the array ps sometimes includes the initial point and sometimes
	#does not, hence we are not always sure the position of the first return.
	itof = np.argmin(np.abs(psreturn[:,0]-Tapproximate))
	tof = psreturn[itof,0]
	
	return tof
Beispiel #2
0
def approximateperiod(xhat0, n):
	"""
	Computes time of flight for xhat0 on the Poincare section to come back onto
	the section for nth time 
	"""
	#Find the point on the computed poincare section, closest to the x0
	imin = np.argmin(np.linalg.norm(ps[:,1:5]-xhat0, axis=1))
	#Take its time of flight as
	if imin < np.size(ps,0)-n: 
		Tapproximate = ps[imin+n,0]-ps[imin,0]
	else:
		Tapproximate = ps[imin,0]-ps[imin-n,0]
	print "Tapproximate:"
	print Tapproximate
	#Integrate for a little bit longer than the approximated integration time:
	stoptime = 1.2*Tapproximate
	numpoints = int(stoptime/0.01)
	#Integration time array:
	t = [stoptime * float(i) / (numpoints - 1) for i in range(numpoints)]
	xhatphi0 = np.append(xhat0, np.array([0], float))
	xhatsol = onslicesolver.integrate(xhatphi0, pars, t, abserror=1.0e-12, relerror=1.0e-10)
	tx = np.append(np.array([t], float).transpose(), xhatsol, axis=1)
	#Compute Poincare section:
	psreturn=psectslice.computeps(tx, sectp, nhat, direction,  p=pars)
	print "psreturn:"
	print psreturn
	#Take the time nearest to the approximated time. This is due to the
	#fact that the array ps sometimes includes the initial point and sometimes
	#does not, hence we are not always sure the position of the first return.
	itof = np.argmin(np.abs(psreturn[:,0]-Tapproximate))
	tof = psreturn[itof,0]
	
	return tof
Beispiel #3
0
def rpot(xt):
    '''
	not for use, under development
	'''
    #print "xt"
    #print xt
    abserr = 1.0e-14
    relerr = 1.0e-12
    #stoptime = xt[4]
    stoptime = xt[3]
    numpoints = int(stoptime / 0.01 + 1.0)
    #print "numpoints:"
    #print numpoints
    #numpoints = 2
    #xphi0=[xt[0], xt[1], xt[2], xt[3], 0]
    xphi0 = [xt[0], 0, xt[1], xt[2], 0]

    # Create the time samples for the output of the ODE solver:
    t = [stoptime * float(i) / (numpoints - 1) for i in range(numpoints)]

    xsol = onslicesolver.integrate(xphi0,
                                   p,
                                   t,
                                   abserror=abserr,
                                   relerror=relerr)
    xsol3d = np.concatenate((np.array([xsol[:, 0]]).T, xsol[:, 2:4]), axis=1)

    #diff = np.concatenate((xsol[10:len(xsol),0:4], np.array([t[10:len(xsol)]]).T), axis=1) - xt[0:5]
    diff = np.concatenate(
        (xsol3d[10:len(xsol), 0:3], np.array([t[10:len(xsol)]]).T),
        axis=1) - xt[0:5]
    #diff = np.linalg.norm(diff, axis=1)

    #diff = xsol[10:len(xsol),0:4] - xt[0:4]

    #diff[:,4] = diff[:,4]/xt[4]
    diff = np.linalg.norm(diff, axis=1)

    imin = np.argmin(diff) + 10

    #print "imin"
    #print imin

    #xf = [xsol[imin, 0],
    #xsol[imin, 1],
    #xsol[imin, 2],
    #xsol[imin, 3],
    #t[imin]]
    xf = [xsol3d[imin, 0], xsol3d[imin, 1], xsol3d[imin, 2], t[imin]]

    #print "xf"
    #print xf

    return xf - xt
Beispiel #4
0
def computeps(xsol, sectp, nhat, direction, p=pars):

    #Poincare hyperplane equation:
    def U(x):
        cond = np.dot(x - sectp, nhat) * direction
        return cond

    #Apply hyperplane condition to each element:
    uxarray = np.dot(xsol[:, 1:5] - sectp, nhat) * direction

    deltat = xsol[1, 0] - xsol[0, 0]  # Read deltat from the data

    #dummy assignment for ps:
    ps = np.array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], float)

    #Look for intersections:
    #for i in range(len(uxarray)-1):
    #if uxarray[i]<0 and uxarray[i+1]>0:
    for i in range(len(xsol) - 1):
        if U(xsol[i, 1:5]) < 0 and U(xsol[i + 1, 1:5]) > 0:

            xhatphidummy = xsol[i, 1:6]
            deltatadaptive = deltat / 2
            pstime = xsol[i, 0]
            j = 1
            condition = U(xhatphidummy[0:4])
            while np.abs(condition) > tolerance:
                j = j + 1
                #Adaptive integration:
                t = [float(0), deltatadaptive]
                xhatsol = onslicesolver.integrate(xhatphidummy, p, t, abserr,
                                                  relerr)
                xhatphidummy = xhatsol[1, :]
                pstime = pstime + deltatadaptive

                condition = U(xhatphidummy[0:4])

                if condition > 0:
                    xhatphidummy = xhatsol[0, :]
                    pstime = pstime - deltatadaptive
                    deltatadaptive = deltatadaptive / 2

                if j > 100:
                    print 'not converging, exiting...'
                    break
            pstime = np.array([pstime], float)
            psdummy = np.concatenate((pstime, xhatphidummy[0:4]))

            ps = np.append(ps, [psdummy], 0)

    ps = ps[2:len(ps), :]

    return ps
Beispiel #5
0
def computeps(xsol, sectp, nhat, direction,  p=pars):
	
	#Poincare hyperplane equation:
	def U(x):
		cond=np.dot(x-sectp, nhat) * direction
		return cond
	
	#Apply hyperplane condition to each element:
	uxarray = np.dot(xsol[:,1:5] - sectp, nhat) * direction
	
	deltat = xsol[1,0]-xsol[0,0] # Read deltat from the data
	
	#dummy assignment for ps:
	ps = np.array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], float)
	
	#Look for intersections:
	#for i in range(len(uxarray)-1):
		#if uxarray[i]<0 and uxarray[i+1]>0:
	for i in range(len(xsol)-1):
		if U(xsol[i, 1:5])<0 and U(xsol[i+1, 1:5])>0:	
			
			xhatphidummy = xsol[i, 1:6]
			deltatadaptive = deltat/2
			pstime = xsol[i,0]
			j=1
			condition = U(xhatphidummy[0:4])
			while np.abs(condition)>tolerance:
				j=j+1
				#Adaptive integration:
				t = [float(0), deltatadaptive]
				xhatsol = onslicesolver.integrate(xhatphidummy, p, t, abserr, relerr)
				xhatphidummy=xhatsol[1, :]
				pstime = pstime + deltatadaptive
				
				condition = U(xhatphidummy[0:4])
				
				if condition > 0:
					xhatphidummy=xhatsol[0,:]
					pstime = pstime - deltatadaptive
					deltatadaptive = deltatadaptive/2
				
				if j > 100:
					print 'not converging, exiting...'
					break
			pstime = np.array([pstime], float)
			psdummy = np.concatenate((pstime, xhatphidummy[0:4]))
		
			ps = np.append(ps, [psdummy],0)
	
	ps = ps[2:len(ps),:]

	return ps
Beispiel #6
0
def computeps(xhatGS, p=pars):

    deltat = xhatGS[1, 0] - xhatGS[0, 0]  # Read deltat from the data

    #dummy assignment for ps:
    ps = np.array([[0, 0, 0, 0], [0, 0, 0, 0]], float)

    #Look for intersections:
    for i in range(len(xhatGS) - 1):
        if U(xhatGS[i, 1:4]) < 0 and U(xhatGS[i + 1, 1:4]) > 0:
            xdummyGS = xhatGS[i, 1:4]
            deltatadaptive = deltat / 2
            pstime = xhatGS[i, 0]
            j = 1
            condition = U(xdummyGS)
            xhatphidummy = np.concatenate(
                (twomode.gramschmidt2ssp(xdummyGS), np.array([0], float)))
            while np.abs(condition) > tolerance:
                j = j + 1
                #Adaptive integration:
                t = [float(0), deltatadaptive]
                xhatsol = onslicesolver.integrate(xhatphidummy, p, t, abserr,
                                                  relerr)
                xhatphidummy = xhatsol[1, :]
                pstime = pstime + deltatadaptive
                xdummyGS = twomode.ssp2gramschmidt(xhatphidummy[0:4])
                condition = U(xdummyGS)

                if condition > 0:
                    xhatphidummy = xhatsol[0, :]
                    pstime = pstime - deltatadaptive
                    deltatadaptive = deltatadaptive / 2

                if j > 100:
                    print 'not converging, exiting...'
                    break
            pstime = np.array([pstime], float)
            psdummy = np.concatenate((pstime, xdummyGS))

            ps = np.append(ps, [psdummy], 0)

    ps = ps[2:len(ps), :]

    return ps
Beispiel #7
0
def computeps(xhatGS, p=pars):
	
	deltat = xhatGS[1,0]-xhatGS[0,0] # Read deltat from the data
	
	#dummy assignment for ps:
	ps = np.array([[0, 0, 0, 0], [0,0,0,0]], float)
	
	#Look for intersections:
	for i in range(len(xhatGS)-1):
		if U(xhatGS[i, 1:4])<0 and U(xhatGS[i+1, 1:4])>0:
			xdummyGS = xhatGS[i, 1:4]
			deltatadaptive = deltat/2
			pstime = xhatGS[i,0]
			j=1
			condition = U(xdummyGS)
			xhatphidummy=np.concatenate((twomode.gramschmidt2ssp(xdummyGS), np.array([0],float)))
			while np.abs(condition)>tolerance:
				j=j+1
				#Adaptive integration:
				t = [float(0), deltatadaptive]
				xhatsol = onslicesolver.integrate(xhatphidummy, p, t, abserr, relerr)
				xhatphidummy=xhatsol[1, :]
				pstime = pstime + deltatadaptive
				xdummyGS = twomode.ssp2gramschmidt(xhatphidummy[0:4])
				condition = U(xdummyGS)
				
				if condition > 0:
					xhatphidummy=xhatsol[0,:]
					pstime = pstime - deltatadaptive
					deltatadaptive = deltatadaptive/2
				
				if j > 100:
					print 'not converging, exiting...'
					break
			pstime = np.array([pstime], float)
			psdummy = np.concatenate((pstime, xdummyGS))
		
			ps = np.append(ps, [psdummy],0)
	
	ps = ps[2:len(ps),:]

	return ps
Beispiel #8
0
rangea1 = np.linspace(0.45, 0.49, num=1000)

#dummy assignment for bif:
bif = np.array([[0,0,0,0], [0,0,0,0]], float)

for a1 in rangea1:

	p = [mu1, a1, b1, c1, mu2, a2, b2, c2, e2]
	
	stoptime = 1000
	numpoints = 50000
	
	# Create the time samples for the output of the ODE solver:
	t = [stoptime * float(i) / (numpoints - 1) for i in range(numpoints)]
	#Integrate
	xhatphi=onslicesolver.integrate(xhatphi0, p, t)
	#Discard the first 1000 time units and phi:
	xhat = xhatphi[numpoints/2:numpoints,0:4]
	#Transform to the Gram-Schmidt basis:
	xgs = twomode.ssp2gramschmidt(xhat.transpose())
	t = np.array([t[numpoints/2:numpoints]],float)
	xgst = np.concatenate((t,xgs))
	xgst = xgst.transpose()
	
	ps = psectgs.computeps(xgst, p)
	adummy = np.ones(len(ps))*a1
	adummy = np.array([adummy])
	bif = np.append(bif, np.concatenate((adummy.T,ps[:,1:4]), axis=1),0)

bif = bif[2:len(bif),:]
Beispiel #9
0
	print x0
	itinerary = itineraries[i1]
	print itinerary[0]
	
	#Period of the ith cycle:
	T = periods[i-1]

	stoptime = T
	numpoints = int(stoptime / 0.01)
	
	# Create the time samples for the output of the ODE solver:
	t = [stoptime * float(i) / (numpoints - 1) for i in range(numpoints)]
	
	# Call the ODE solver
	xhatphi0 = np.append(x0, np.array([0], float))
	xhatsol = onslicesolver.integrate(xhatphi0, pars, t, abserror=1.0e-14, relerror=1.0e-12)
	
	ax.plot(xhatsol[:,0], xhatsol[:,2], xhatsol[:,3], lw=0.5)
	ax.set_xlabel('$x$', fontsize=18)
	ax.set_ylabel('$y$', fontsize=18)
	ax.set_zlabel('$z$', fontsize=18)
	ax.view_init(25,35)
	ax.grid(b='off')
	
	
	fname = 'image/' + itinerary[0] + '.png'
	savefig(fname, bbox_inches='tight', dpi=100)	

	#plt.show()	
	#raw_input("Press Enter to continue...")
Beispiel #10
0
    print itinerary[0]

    #Period of the ith cycle:
    T = periods[i - 1]

    stoptime = T
    numpoints = int(stoptime / 0.01)

    # Create the time samples for the output of the ODE solver:
    t = [stoptime * float(i) / (numpoints - 1) for i in range(numpoints)]

    # Call the ODE solver
    xhatphi0 = np.append(x0, np.array([0], float))
    xhatsol = onslicesolver.integrate(xhatphi0,
                                      pars,
                                      t,
                                      abserror=1.0e-14,
                                      relerror=1.0e-12)

    ax.plot(xhatsol[:, 0], xhatsol[:, 2], xhatsol[:, 3], lw=0.5)
    ax.set_xlabel('$x$', fontsize=18)
    ax.set_ylabel('$y$', fontsize=18)
    ax.set_zlabel('$z$', fontsize=18)
    ax.view_init(25, 35)
    ax.grid(b='off')

    fname = 'image/' + itinerary[0] + '.png'
    savefig(fname, bbox_inches='tight', dpi=100)

    #plt.show()
    #raw_input("Press Enter to continue...")
Beispiel #11
0
def FPO(xn, tof):
	"""
	Vector input - Vector output function to solve for to get fixed points 
	or n-cycles of the Poincare return map. 
	xn = (n*(d-1))-dimensional array with n-cycle candidates at each row.
	xn = [x1_1
		  x1_2
		  x2_1
		  x2_2
		  x3_1
		  x3_2
		  ...
			]
	Where in xi_j first index denotes ith element of cycle and the second 
	index denotes jth coordinate of ith element.
	tof = n - dimensional vector to hold return time for each candidate
	"""
	#Reshape xn into a form such that at each row there are coordinates of
	#one element of the cycle in collumns. Namely,
	#xn = [[x1_1, x1_2], 
	#	   [x2_1, x2_2], 
	#	   [x3_1, x3_2], ...]
	xn = xn.reshape(np.size(tof), 2)
	#First compute P(x_i) and write as a matrix (n x d-1):
	Px = np.zeros(np.shape(xn)) #dummy assignment
	#print "Px"
	#print Px
	for i in range(np.size(xn,0)):
		#3D initial point to integrate
		xhat0=ps2D2psxhat(xn[i])
		
		pret = np.array([], float)
		factor = 1.2
		
		while np.size(pret)==0:
			#Integrate for a little bit longer than the time of flight:
			stoptime = factor*tof[i]
			#print "stoptime="
			#print stoptime
			numpoints = int(stoptime/0.01)
			#Integration time array:
			t = [stoptime * float(j) / (numpoints - 1) for j in range(numpoints)]
			xhatphi0 = np.append(xhat0, np.array([0], float))
			xhatsol = onslicesolver.integrate(xhatphi0, pars, t, abserror=1.0e-14, relerror=1.0e-12)
			tx = np.append(np.array([t], float).transpose(), xhatsol, axis=1)
			#Compute Poincare section:
			psreturn=psectslice.computeps(tx, sectp, nhat, direction,  p=pars)
			#Take the time nearest to the approximated time. This is due to the
			#fact that the array ps sometimes includes the initial point and sometimes
			#does not, hence we are not always sure the position of the first return.
			#print "xsol:"
			#print xsol
			#print "psreturn:"
			#print psreturn
			if np.size(psreturn,0) != 0:
				itof = np.argmin(np.abs(psreturn[:,0])-tof[i])
				pret = psreturn[itof, 0:]			
			else:
				factor = factor**2
				if factor > 50:
					print "something went wrong for:"
					print "xhat0 = "
					print xhat0
					print "Time of flight:"
					print tof[i]
					break 
					
		ps2D = psxhat2ps2D(pret)[0:2]
		
		#print "ps2D"
		#print ps2D
		
		Px[i,:] = ps2D
		
	Pxshifted = np.append(np.array([Px[np.size(Px,0)-1,:]]), Px[0:np.size(Px,0)-1,:], axis=0)	
	
	fun = xn - Pxshifted
	#Convert back to a vector function
	fun = fun.reshape(np.size(fun))
	
	return fun
ax.hold(True)

for i in range(nplot):

    stoptime = Trpo[i]
    numpoints = int(stoptime / 0.001 + 1.0)

    t = np.linspace(0, stoptime, numpoints)

    xphi0 = [xrpo[i, 0], 0, xrpo[i, 1], xrpo[i, 2], 0]
    #xphi0=[xrpo[i, 0], xrpo[i, 1], xrpo[i, 2], xrpo[i, 3], 0]

    xsol = onslicesolver.integrate(xphi0,
                                   pars,
                                   t,
                                   abserror=abserr,
                                   relerror=relerr)

    if i % nplot == 0:
        color = 'b'
    elif i % nplot == 1:
        color = 'r'
    elif i % nplot == 2:
        color = 'g'
    elif i % nplot == 3:
        color = 'k'

    ax.plot(xsol[:, 0], xsol[:, 2], xsol[:, 3], linewidth=lw, c=color)

    print xsol[0, :] - xsol[numpoints - 1, :]
Beispiel #13
0
ax.w_zaxis.set_pane_color((1, 1, 1, 1.0))
ax.view_init(30,30)

ax.hold(True)
	
for i in range(nplot):
	
	stoptime = Trpo[i]
	numpoints = int(stoptime/0.001 + 1.0)
	
	t = np.linspace(0,stoptime,numpoints)
	
	xphi0=[xrpo[i, 0], 0, xrpo[i, 1], xrpo[i, 2], 0]
	#xphi0=[xrpo[i, 0], xrpo[i, 1], xrpo[i, 2], xrpo[i, 3], 0]
	
	xsol = onslicesolver.integrate(xphi0, pars, t, abserror=abserr, relerror=relerr)
	
	if i%nplot == 0:
		color = 'b'
	elif i%nplot == 1:
		color = 'r'
	elif i%nplot == 2:
		color = 'g'
	elif i%nplot == 3:
		color = 'k'
		
	ax.plot(xsol[:,0], xsol[:,2], xsol[:,3], linewidth=lw , c=color)
	
	print xsol[0,:] - xsol[numpoints-1,:]

savefig('image/rpos.png', bbox_inches='tight', dpi=300)
Beispiel #14
0
xphi02 = [0.43998243, 0.0, -1.68577368, 0.06639063, 0]# rpo01
xphi03 = [0.0384074556708, 0.0, -1.90362452394, 0.0668631895808, 0] #attractor

u01 = twomode.ssp2invpol(x01)
u02 = twomode.ssp2invpol(x02)
u03 = twomode.ssp2invpol(x03)

t1 = np.linspace(0,100,100000)
t2 = np.linspace(0, 2*7.34594139e+00, 10000)
t3 = t1

xsol1 = sspsolver.integrate(x01, p, t1)
xsol2 = sspsolver.integrate(x02, p, t2)
xsol3 = sspsolver.integrate(x03, p, t3)

xhatsol1 = onslicesolver.integrate(xphi01, p, t1)
xhatsol2 = onslicesolver.integrate(xphi02, p, t2)
xhatsol3 = onslicesolver.integrate(xphi03, p, t3)

usol1 = invpolsolver.integrate(u01, p, t1)
usol2 = invpolsolver.integrate(u02, p, t2)
usol3 = invpolsolver.integrate(u03, p, t3)

xtildesol1 = twomode.ssp2sspRed2(xsol1)
xtildesol2 = twomode.ssp2sspRed2(xsol2)
xtildesol3 = twomode.ssp2sspRed2(xsol3)

#Plot full state space:

fig = plt.figure(figsize=(8,7))
ax = fig.gca(projection='3d')
Beispiel #15
0
def rpo(x, Tapproximate):
    print "x"
    print x
    abserr = 1.0e-14
    relerr = 1.0e-12
    starttime = Tapproximate * 0.9
    stoptime = Tapproximate * 1.1
    #print "starttime = ", starttime
    #print "stoptime = ", stoptime
    #numpoints = int(stoptime/0.0001 + 1.0)
    numpoints1 = int(starttime / 0.01 + 1.0)
    numpoints = int(1e4)
    #print "numpoints:"
    #print numpoints
    #numpoints = 2
    #xphi0=[x[0], x[1], x[2], x[3], 0]
    xphi0 = [x[0], 0, x[1], x[2], 0]

    t1 = [starttime * float(i) / (numpoints1 - 1) for i in range(numpoints1)]
    xsol1 = onslicesolver.integrate(xphi0,
                                    p,
                                    t1,
                                    abserror=abserr,
                                    relerror=relerr)
    xphi1 = xsol1[len(xsol1) - 1, :]

    # Create the time samples for the output of the ODE solver:
    #t = [stoptime * float(i) / (numpoints - 1) for i in range(numpoints)]
    #t = np.append([0], np.linspace(starttime, stoptime, numpoints))

    t = [(stoptime - starttime) * float(i) / (numpoints - 1)
         for i in range(numpoints)]
    #xsol = onslicesolver.integrate(xphi0, p, t, abserror=abserr, relerror=relerr)
    xsol = onslicesolver.integrate(xphi1,
                                   p,
                                   t,
                                   abserror=abserr,
                                   relerror=relerr)
    xsol3d = np.concatenate((np.array([xsol[:, 0]]).T, xsol[:, 2:4]), axis=1)

    #diff = xsol[int(numpoints/2):len(xsol),0:4] - x
    #diff = xsol3d[int(numpoints/2):len(xsol),0:3] - x
    diff = xsol3d[0:len(xsol3d), 0:3] - x

    diff = np.linalg.norm(diff, axis=1)

    #imin = np.argmin(diff)+int(numpoints/2)
    #imin = np.argmin(diff)+1
    imin = np.argmin(diff)

    print "tmin"
    print t[imin] + starttime

    #xf = [xsol[imin, 0],
    #xsol[imin, 1],
    #xsol[imin, 2],
    #xsol[imin, 3]]
    xf = [xsol3d[imin, 0], xsol3d[imin, 1], xsol3d[imin, 2]]

    print "xf"
    print xf

    return xf - x
Beispiel #16
0
u02 = twomode.ssp2invpol(x02)
u03 = twomode.ssp2invpol(x03)

tfreqv = 50
tfrpo = 10*3.641511999233241426e+00
tfrpo = 2* 7.34594127
tfergo = tfreqv
treqv = np.linspace(0,tfreqv,5000)
trpo = np.linspace(0, tfrpo, 10000)
tergo = np.linspace(0, tfergo, 5000)

xsolreqv = sspsolver.integrate(x01, p, treqv)
xsolrpo = sspsolver.integrate(x02, p, trpo)
xsolergo = sspsolver.integrate(x03, p, tergo)

xhatsolreqv = onslicesolver.integrate(xphi01, p, treqv)
xhatsolrpo = onslicesolver.integrate(xphi02, p, trpo)
xhatsolergo = onslicesolver.integrate(xphi03, p, tergo)


def inverseFourier(xsol):
    """
    Generates configuration space solution u(x) = F^-1{z[k]} from the Fourier 
    modes
    """
    zsol = np.array([[xsol[i,0] + 1j*xsol[i,1], xsol[i,2] + 1j*xsol[i,3]] for i 
                    in range(np.size(xsol, 0))],complex)
    
    x = np.arange(-np.pi, np.pi, 0.05)
    exp1jx = np.exp(1j*x) 
    exp2jx = np.exp(2j*x)