from opcodes import BYTE, SHR, DIV from rule import Rule from z3 import BitVec, ULT """ byte(A, shr(B, X)) given A < B / 8 -> 0 """ rule = Rule() n_bits = 256 # Input vars X = BitVec('X', n_bits) A = BitVec('A', n_bits) B = BitVec('B', n_bits) # Non optimized result nonopt = BYTE(A, SHR(B, X)) # Optimized result opt = 0 rule.require(ULT(A, DIV(B, 8))) rule.check(nonopt, opt)
""" # Approximation with 16-bit base types. n_bits = 16 type_bits = 8 while type_bits <= n_bits: rule = Rule() # Input vars X_short = BitVec('X', type_bits) Y_short = BitVec('Y', type_bits) # Z3's overflow condition actual_overflow = Not(BVMulNoOverflow(X_short, Y_short, False)) # cast to full n_bits values X = BVUnsignedUpCast(X_short, n_bits) Y = BVUnsignedUpCast(Y_short, n_bits) # Constants maxValue = BVUnsignedMax(type_bits, n_bits) # Overflow check in YulUtilFunction::overflowCheckedIntMulFunction overflow_check = AND(ISZERO(ISZERO(X)), GT(Y, DIV(maxValue, X))) rule.check(overflow_check != 0, actual_overflow) type_bits *= 2
DIV(X, A) -> SHR(k, X) Requirements: A == 1 << K """ rule = Rule() n_bits = 32 # Input vars X = BitVec('X', n_bits) A = BitVec('A', n_bits) K = BitVec('K', n_bits) # Requirements rule.require(A == SHL(K, 1)) # Non optimized result nonopt_1 = MUL(X, A) nonopt_2 = MUL(A, X) nonopt_3 = DIV(X, A) # Optimized result opt_1 = SHL(K, X) opt_2 = SHL(K, X) opt_3 = SHR(K, X) rule.check(nonopt_1, opt_1) rule.check(nonopt_2, opt_2) rule.check(nonopt_3, opt_3)
X_short = BitVec('X', type_bits) Y_short = BitVec('Y', type_bits) # Z3's overflow and underflow conditions actual_overflow = Not(BVMulNoOverflow(X_short, Y_short, True)) actual_underflow = Not(BVMulNoUnderflow(X_short, Y_short)) # cast to full n_bits values X = BVSignedUpCast(X_short, n_bits) Y = BVSignedUpCast(Y_short, n_bits) # Constants maxValue = BVSignedMax(type_bits, n_bits) minValue = BVSignedMin(type_bits, n_bits) # Overflow and underflow checks in YulUtilFunction::overflowCheckedIntMulFunction overflow_check_1 = AND(AND(SGT(X, 0), SGT(Y, 0)), GT(X, DIV(maxValue, Y))) underflow_check_1 = AND(AND(SGT(X, 0), SLT(Y, 0)), SLT(Y, SDIV(minValue, X))) underflow_check_2 = AND(AND(SLT(X, 0), SGT(Y, 0)), SLT(X, SDIV(minValue, Y))) overflow_check_2 = AND(AND(SLT(X, 0), SLT(Y, 0)), SLT(X, SDIV(maxValue, Y))) rule.check(actual_overflow, Or(overflow_check_1 != 0, overflow_check_2 != 0)) rule.check(actual_underflow, Or(underflow_check_1 != 0, underflow_check_2 != 0)) type_bits *= 2
from opcodes import DIV, SHL, SHR from rule import Rule from z3 import BitVec """ Rule: DIV(X, SHL(Y, 1)) -> SHR(Y, X) Requirements: """ rule = Rule() n_bits = 32 # Input vars X = BitVec('X', n_bits) Y = BitVec('Y', n_bits) # Non optimized result nonopt = DIV(X, SHL(Y, 1)) # Optimized result opt = SHR(Y, X) rule.check(nonopt, opt)
""" # Approximation with 16-bit base types. n_bits = 12 for type_bits in [4, 6, 8, 12]: rule = Rule() # Input vars X_short = BitVec('X', type_bits) Y_short = BitVec('Y', type_bits) # Z3's overflow condition actual_overflow = Not(BVMulNoOverflow(X_short, Y_short, False)) # cast to full n_bits values X = BVUnsignedUpCast(X_short, n_bits) Y = BVUnsignedUpCast(Y_short, n_bits) product_raw = MUL(X, Y) #remove any overflown bits product = BVUnsignedCleanupFunction(product_raw, type_bits) # Overflow check in YulUtilFunction::overflowCheckedIntMulFunctions if type_bits > n_bits / 2: overflow_check = ISZERO(OR(ISZERO(X), EQ(Y, DIV(product, X)))) else: overflow_check = ISZERO(EQ(product, product_raw)) rule.check(overflow_check != 0, actual_overflow)
from opcodes import BYTE, DIV, SHR from rule import Rule from z3 import BitVec, UGE, ULE, ULT """ byte(A, shr(B, X)) given B % 8 == 0 && A < n_bits/8 && B <= n_bits && A >= B / 8 -> byte(A - B / 8, X) """ rule = Rule() n_bits = 256 # Input vars X = BitVec('X', n_bits) A = BitVec('A', n_bits) B = BitVec('B', n_bits) # Non optimized result nonopt = BYTE(A, SHR(B, X)) # Optimized result opt = BYTE(A - B / 8, X) rule.require(B % 8 == 0) rule.require(ULT(A, n_bits / 8)) rule.require(ULE(B, n_bits)) rule.require(UGE(A, DIV(B, 8))) rule.check(nonopt, opt)