Beispiel #1
0
    def detect_faces(self, img_grey):
        """ Detect faces within an image, then draw around them.
			The default parameters (scale_factor=1.1, min_neighbors=3, flags=0) are tuned 
			for accurate yet slow object detection. For a faster operation on real video 
			images the settings are: 
			scale_factor=1.2, min_neighbors=2, flags=CV_HAAR_DO_CANNY_PRUNING, 
			min_size=<minimum possible face size
		"""
        min_size = cv.cvSize(20, 20)
        self.image_scale = 1.3
        haar_scale = 1.2
        min_neighbors = 2
        haar_flags = 0

        # Create a small image for better performance
        small_size = cv.cvSize(cv.cvRound(img_grey.width / self.image_scale),
                               cv.cvRound(img_grey.height / self.image_scale))
        small_img = cv.cvCreateImage(small_size, 8, 1)
        cv.cvResize(img_grey, small_img, cv.CV_INTER_LINEAR)
        cv.cvEqualizeHist(small_img, small_img)
        cv.cvClearMemStorage(self.faces_storage)

        if (self.cascade):
            t = cv.cvGetTickCount()
            faces = cv.cvHaarDetectObjects(small_img, self.cascade,
                                           self.faces_storage, haar_scale,
                                           min_neighbors, haar_flags, min_size)
            t = cv.cvGetTickCount() - t
            cv.cvReleaseImage(small_img)
            #print "detection time = %gms" % (t/(cvGetTickFrequency()*1000.));
            return faces
Beispiel #2
0
	def detect_faces(self, img_grey):
		""" Detect faces within an image, then draw around them.
			The default parameters (scale_factor=1.1, min_neighbors=3, flags=0) are tuned 
			for accurate yet slow object detection. For a faster operation on real video 
			images the settings are: 
			scale_factor=1.2, min_neighbors=2, flags=CV_HAAR_DO_CANNY_PRUNING, 
			min_size=<minimum possible face size
		"""
		min_size								= cv.cvSize(20,20)
		self.image_scale						= 1.3
		haar_scale								= 1.2
		min_neighbors							= 2
		haar_flags								= 0

		# Create a small image for better performance
		small_size								= cv.cvSize(cv.cvRound(img_grey.width/self.image_scale),cv.cvRound(img_grey.height/self.image_scale))
		small_img								= cv.cvCreateImage(small_size, 8, 1)
		cv.cvResize(img_grey, small_img, cv.CV_INTER_LINEAR)
		cv.cvEqualizeHist(small_img, small_img)
		cv.cvClearMemStorage(self.faces_storage)

		if(self.cascade):
			t									= cv.cvGetTickCount();
			faces								= cv.cvHaarDetectObjects(small_img,
																		self.cascade,
																		self.faces_storage,
																		haar_scale,
																		min_neighbors,
																		haar_flags,
																		min_size)
			t									= cv.cvGetTickCount() - t
			cv.cvReleaseImage(small_img)
			#print "detection time = %gms" % (t/(cvGetTickFrequency()*1000.));
			return faces
Beispiel #3
0
def _detect(image):
    """ Detects faces on `image`
    Parameters:
        @image: image file path

    Returns:
        [((x1, y1), (x2, y2)), ...] List of coordenates for top-left
                                    and bottom-right corner
    """
    # the OpenCV API says this function is obsolete, but we can't
    # cast the output of cvLoad to a HaarClassifierCascade, so use
    # this anyways the size parameter is ignored
    capture = cvCreateFileCapture(image)

    if not capture:
        return []

    frame = cvQueryFrame(capture)
    if not frame:
        return []

    img = cvCreateImage(cvSize(frame.width, frame.height), IPL_DEPTH_8U,
                        frame.nChannels)
    cvCopy(frame, img)

    # allocate temporary images
    gray = cvCreateImage((img.width, img.height), COPY_DEPTH, COPY_CHANNELS)
    width, height = (cvRound(img.width / IMAGE_SCALE),
                     cvRound(img.height / IMAGE_SCALE))
    small_img = cvCreateImage((width, height), COPY_DEPTH, COPY_CHANNELS)

    # convert color input image to grayscale
    cvCvtColor(img, gray, CV_BGR2GRAY)

    # scale input image for faster processing
    cvResize(gray, small_img, CV_INTER_LINEAR)
    cvEqualizeHist(small_img, small_img)
    cvClearMemStorage(STORAGE)

    coords = []
    for haar_file in CASCADES:
        cascade = cvLoadHaarClassifierCascade(haar_file, cvSize(1, 1))
        if cascade:
            faces = cvHaarDetectObjects(small_img, cascade, STORAGE,
                                        HAAR_SCALE, MIN_NEIGHBORS, HAAR_FLAGS,
                                        MIN_SIZE) or []
            for face_rect in faces:
                # the input to cvHaarDetectObjects was resized, so scale the
                # bounding box of each face and convert it to two CvPoints
                x, y = face_rect.x, face_rect.y
                pt1 = (int(x * IMAGE_SCALE), int(y * IMAGE_SCALE))
                pt2 = (int((x + face_rect.width) * IMAGE_SCALE),
                       int((y + face_rect.height) * IMAGE_SCALE))
                coords.append((pt1, pt2))
    return coords
Beispiel #4
0
def _detect(image):
    """ Detects faces on `image`
    Parameters:
        @image: image file path

    Returns:
        [((x1, y1), (x2, y2)), ...] List of coordenates for top-left
                                    and bottom-right corner
    """
    # the OpenCV API says this function is obsolete, but we can't
    # cast the output of cvLoad to a HaarClassifierCascade, so use
    # this anyways the size parameter is ignored
    capture = cvCreateFileCapture(image) 

    if not capture:
        return []

    frame = cvQueryFrame(capture)
    if not frame:
        return []

    img = cvCreateImage(cvSize(frame.width, frame.height),
                        IPL_DEPTH_8U, frame.nChannels)
    cvCopy(frame, img)

    # allocate temporary images
    gray          = cvCreateImage((img.width, img.height),
                                  COPY_DEPTH, COPY_CHANNELS)
    width, height = (cvRound(img.width / IMAGE_SCALE),
                     cvRound(img.height / IMAGE_SCALE))
    small_img     = cvCreateImage((width, height), COPY_DEPTH, COPY_CHANNELS)

    # convert color input image to grayscale
    cvCvtColor(img, gray, CV_BGR2GRAY)

    # scale input image for faster processing
    cvResize(gray, small_img, CV_INTER_LINEAR)
    cvEqualizeHist(small_img, small_img)
    cvClearMemStorage(STORAGE)

    coords = []
    for haar_file in CASCADES:
        cascade = cvLoadHaarClassifierCascade(haar_file, cvSize(1, 1))
        if cascade:
            faces = cvHaarDetectObjects(small_img, cascade, STORAGE, HAAR_SCALE,
                                        MIN_NEIGHBORS, HAAR_FLAGS, MIN_SIZE) or []
            for face_rect in faces:
                # the input to cvHaarDetectObjects was resized, so scale the 
                # bounding box of each face and convert it to two CvPoints
                x, y = face_rect.x, face_rect.y
                pt1 = (int(x * IMAGE_SCALE), int(y * IMAGE_SCALE))
                pt2 = (int((x + face_rect.width) * IMAGE_SCALE),
                       int((y + face_rect.height) * IMAGE_SCALE))
                coords.append((pt1, pt2))
    return coords
Beispiel #5
0
 def resizeImage(self, image_location, ouput_location, size):
     """
         resizes the image to a rectangle with the given size and saves it
     """
     width = size
     height = size
     
     input_image = highgui.cvLoadImage(image_location, 1) # flag: >0 the loaded image is forced to be a 3-channel color image
     
     output_image = cv.cvCreateImage(cv.cvSize(cv.cvRound(width), cv.cvRound(height)), 8, 3);
     cv.cvResize(input_image, output_image, cv.CV_INTER_LINEAR);
     highgui.cvSaveImage(ouput_location, output_image) # save the image to file
Beispiel #6
0
 def __normImage(self, img, length):
     #print "Generating norm image..."
     width = length
     height = length
     gray = cv.cvCreateImage(cv.cvSize(img.width,img.height), 8, 1);
     small_img = cv.cvCreateImage(cv.cvSize(cv.cvRound(width),
                                        cv.cvRound(height)), 8, 1 );
 
     # convert color input image to grayscale
     cv.cvCvtColor(img, gray, cv.CV_BGR2GRAY);
     # scale input image for faster processing
     cv.cvResize(gray, small_img, cv.CV_INTER_LINEAR);
     cv.cvEqualizeHist(small_img, small_img);
     #cvClearMemStorage(self.storage);
     norm_image = small_img # save the 'normalized image'
     return norm_image
Beispiel #7
0
	def detect_face(self, img):
		""" Detect faces within an image, then draw around them.
			The default parameters (scale_factor=1.1, min_neighbors=3, flags=0) are tuned 
			for accurate yet slow object detection. For a faster operation on real video 
			images the settings are: 
			scale_factor=1.2, min_neighbors=2, flags=CV_HAAR_DO_CANNY_PRUNING, 
			min_size=<minimum possible face size
		"""
		min_size								= cv.cvSize(20,20)
		image_scale								= 1.3
		haar_scale								= 1.2
		min_neighbors							= 2
		haar_flags								= 0
		gray									= cv.cvCreateImage(cv.cvSize(img.width,img.height), 8, 1)
		small_img								= cv.cvCreateImage(cv.cvSize(cv.cvRound(img.width/image_scale),
												  cv.cvRound(img.height/image_scale)), 8, 1)
		cv.cvCvtColor(img, gray, cv.CV_BGR2GRAY)
		cv.cvResize(gray, small_img, cv.CV_INTER_LINEAR)
		cv.cvEqualizeHist(small_img, small_img)
		cv.cvClearMemStorage(self.storage)

		if(self.cascade):
			t									= cv.cvGetTickCount();
			faces								= cv.cvHaarDetectObjects(small_img,
																		self.cascade,
																		self.storage,
																		haar_scale,
																		min_neighbors,
																		haar_flags,
																		min_size)
			t									= cv.cvGetTickCount() - t
			#print "detection time = %gms" % (t/(cvGetTickFrequency()*1000.));
			if faces:
				for r in faces:
					pt1							= cv.cvPoint(int(r.x*image_scale), int(r.y*image_scale))
					pt2							= cv.cvPoint(int((r.x+r.width)*image_scale),
																int((r.y+r.height)*image_scale))
					cv.cvRectangle(img, pt1, pt2, cv.CV_RGB(255,0,0), 3, 8, 0)
		return img
    def detect_face(self, img):
        """ Detect faces within an image, then draw around them.
			The default parameters (scale_factor=1.1, min_neighbors=3, flags=0) are tuned 
			for accurate yet slow object detection. For a faster operation on real video 
			images the settings are: 
			scale_factor=1.2, min_neighbors=2, flags=CV_HAAR_DO_CANNY_PRUNING, 
			min_size=<minimum possible face size
		"""
        min_size = cv.cvSize(20, 20)
        image_scale = 1.3
        haar_scale = 1.2
        min_neighbors = 2
        haar_flags = 0
        gray = cv.cvCreateImage(cv.cvSize(img.width, img.height), 8, 1)
        small_img = cv.cvCreateImage(
            cv.cvSize(cv.cvRound(img.width / image_scale),
                      cv.cvRound(img.height / image_scale)), 8, 1)
        cv.cvCvtColor(img, gray, cv.CV_BGR2GRAY)
        cv.cvResize(gray, small_img, cv.CV_INTER_LINEAR)
        cv.cvEqualizeHist(small_img, small_img)
        cv.cvClearMemStorage(self.storage)

        if (self.cascade):
            t = cv.cvGetTickCount()
            faces = cv.cvHaarDetectObjects(small_img, self.cascade,
                                           self.storage, haar_scale,
                                           min_neighbors, haar_flags, min_size)
            t = cv.cvGetTickCount() - t
            #print "detection time = %gms" % (t/(cvGetTickFrequency()*1000.));
            if faces:
                for r in faces:
                    pt1 = cv.cvPoint(int(r.x * image_scale),
                                     int(r.y * image_scale))
                    pt2 = cv.cvPoint(int((r.x + r.width) * image_scale),
                                     int((r.y + r.height) * image_scale))
                    cv.cvRectangle(img, pt1, pt2, cv.CV_RGB(255, 0, 0), 3, 8,
                                   0)
        return img
Beispiel #9
0
def returnEllipses(contours):
	ellipses = []
	for c in contours.hrange():
		count = c.total;
		if( count < 6 ):
			continue;
		PointArray = cv.cvCreateMat(1, count, cv.CV_32SC2)
		PointArray2D32f= cv.cvCreateMat( 1, count, cv.CV_32FC2)
		cv.cvCvtSeqToArray(c, PointArray, cv.cvSlice(0, cv.CV_WHOLE_SEQ_END_INDEX));
		cv.cvConvert( PointArray, PointArray2D32f )
		
		box = cv.CvBox2D()
		box = cv.cvFitEllipse2(PointArray2D32f);
		#cv.cvDrawContours(frame, c, cv.CV_RGB(255,255,255), cv.CV_RGB(255,255,255),0,1,8,cv.cvPoint(0,0));

		center = cv.CvPoint()
		size = cv.CvSize()
		center.x = cv.cvRound(box.center.x);
		center.y = cv.cvRound(box.center.y);
		size.width = cv.cvRound(box.size.width*0.5);
		size.height = cv.cvRound(box.size.height*0.5);
		box.angle = -box.angle;
		ellipses.append({'center':center, 'size':size, 'angle':box.angle})
	return ellipses
Beispiel #10
0
def hsv2rgb(hue):
    # convert the hue value to the corresponding rgb value

    sector_data = [[0, 2, 1], [1, 2, 0], [1, 0, 2], [2, 0, 1], [2, 1, 0], [0, 1, 2]]
    hue *= 0.1 / 3
    sector = cv.cvFloor(hue)
    p = cv.cvRound(255 * (hue - sector))
    if sector & 1:
        p ^= 255

    rgb = {}
    rgb[sector_data[sector][0]] = 255
    rgb[sector_data[sector][1]] = 0
    rgb[sector_data[sector][2]] = p

    return cv.cvScalar(rgb[2], rgb[1], rgb[0], 0)
Beispiel #11
0
def hsv2rgb(hue):
    # convert the hue value to the corresponding rgb value

    sector_data = [[0, 2, 1], [1, 2, 0], [1, 0, 2], [2, 0, 1], [2, 1, 0],
                   [0, 1, 2]]
    hue *= 0.1 / 3
    sector = cv.cvFloor(hue)
    p = cv.cvRound(255 * (hue - sector))
    if sector & 1:
        p ^= 255

    rgb = {}
    rgb[sector_data[sector][0]] = 255
    rgb[sector_data[sector][1]] = 0
    rgb[sector_data[sector][2]] = p

    return cv.cvScalar(rgb[2], rgb[1], rgb[0], 0)
Beispiel #12
0
	def timerEvent(self, ev):
		# Fetch a frame from the video camera
		frame									= highgui.cvQueryFrame(self.cap)
		img_orig								= cv.cvCreateImage(cv.cvSize(frame.width,frame.height),cv.IPL_DEPTH_8U, frame.nChannels)
		if (frame.origin == cv.IPL_ORIGIN_TL):
			cv.cvCopy(frame, img_orig)
		else:
			cv.cvFlip(frame, img_orig, 0)

		# Create a grey frame to clarify data
		img_grey								= cv.cvCreateImage(cv.cvSize(img_orig.width,img_orig.height), 8, 1)
		cv.cvCvtColor(img_orig, img_grey, cv.CV_BGR2GRAY)
		# Detect objects within the frame
		self.faces_storage						= cv.cvCreateMemStorage(0)
		faces									= self.detect_faces(img_grey)
		self.circles_storage					= cv.cvCreateMemStorage(0)
		circles									= self.detect_circles(img_grey)
		self.squares_storage					= cv.cvCreateMemStorage(0)
		squares									= self.detect_squares(img_grey, img_orig)
		self.lines_storage						= cv.cvCreateMemStorage(0)
		lines									= self.detect_lines(img_grey, img_orig)

		# Draw faces
		if faces:
			for face in faces:
				pt1, pt2						= self.face_points(face)
				cv.cvRectangle(img_orig, pt1, pt2, cv.CV_RGB(255,0,0), 3, 8, 0)

		# Draw lines
		if lines:
			for line in lines:
				cv.cvLine(img_orig, line[0], line[1], cv.CV_RGB(255,255,0), 3, 8)
		# Draw circles
		if circles:
			for circle in circles:
				cv.cvCircle(img_orig, cv.cvPoint(cv.cvRound(circle[0]),cv.cvRound(circle[1])),cv.cvRound(circle[2]),cv.CV_RGB(0,0,255),3,8,0)

		# Draw squares
		if squares:
			i									= 0
			while i<squares.total:
					pt							= []
					# read 4 vertices
					pt.append(squares[i])
					pt.append(squares[i+1])
					pt.append(squares[i+2])
					pt.append(squares[i+3])
					## draw the square as a closed polyline
					cv.cvPolyLine(img_orig, [pt], 1, cv.CV_RGB(0,255,0), 3, cv.CV_AA, 0)
					i							+= 4

		# Resize the image to display properly within the window
		#	CV_INTER_NN - nearest-neigbor interpolation, 
		#	CV_INTER_LINEAR - bilinear interpolation (used by default) 
		#	CV_INTER_AREA - resampling using pixel area relation. (preferred for image decimation)
		#	CV_INTER_CUBIC - bicubic interpolation.
		img_display								= cv.cvCreateImage(cv.cvSize(self.width(),self.height()), 8, 3)
		cv.cvResize(img_orig, img_display, cv.CV_INTER_NN)
		img_pil									= adaptors.Ipl2PIL(img_display)
		s										= StringIO()
		img_pil.save(s, "PNG")
		s.seek(0)
		q_img									= QImage()
		q_img.loadFromData(s.read())
		bitBlt(self, 0, 0, q_img)
Beispiel #13
0
            scale = 0.

        # scale the histograms
        cv.cvConvertScale(hist.bins, hist.bins, scale, 0)

        # clear the histogram image
        cv.cvSetZero(histimg)

        # compute the width for each bin do display
        bin_w = histimg.width / hdims

        for i in range(hdims):
            # for all the bins

            # get the value, and scale to the size of the hist image
            val = cv.cvRound(
                cv.cvGetReal1D(hist.bins, i) * histimg.height / 255)

            # compute the color
            color = hsv2rgb(i * 180. / hdims)

            # draw the rectangle in the wanted color
            cv.cvRectangle(histimg, cv.cvPoint(i * bin_w, histimg.height),
                           cv.cvPoint((i + 1) * bin_w, histimg.height - val),
                           color, -1, 8, 0)
        # Make the sweet negative selection box
        if mouse_select_object and mouse_selection.width > 0 and mouse_selection.height > 0:
            a = cv.cvGetSubRect(frame, mouse_selection)
            cv.cvXorS(a, cv.cvScalarAll(255),
                      a)  # Take the negative of the image..
            del a
cv.cvCanny(grayimage, cannyedges, 150, 450 , 3)


#This is the line that throws the error
storage = cv.cvCreateMat(50, 1, cv.CV_32FC3)

cv.cvSetZero(storage)

#circles = cv.cvHoughCircles(grayimage, storage, cv.CV_HOUGH_GRADIENT, 2, grayimage.height/4, 150, 40, long(sys.argv[2]), long(sys.argv[3]))
#circles = cv.cvHoughCircles(grayimage, storage, cv.CV_HOUGH_GRADIENT, 1, grayimage.height, 200, 40, long(sys.argv[2]), long(sys.argv[3]))
circles = cv.cvHoughCircles(grayimage, storage, cv.CV_HOUGH_GRADIENT, 1, grayimage.width, 150, 40, long(sys.argv[2]), grayimage.width)

print storage
for i in storage:
    print i[0], i[1], i[2]
    center = cv.cvRound(i[0]), cv.cvRound(i[1])
    radius = cv.cvRound(i[2])
    cv.cvCircle(image, (center), radius, cv.CV_RGB(255, 0, 0), 1, cv.CV_AA, 0 ) 
    cv.cvCircle(image, (center), 10, cv.CV_RGB(255, 0, 0), -1, cv.CV_AA, 0 ) 
    cv.cvCircle(cannyedges, (center), radius, cv.CV_RGB(255, 255, 255), 1, cv.CV_AA, 0 ) 
 #   for c in range(0,3):
        #v = cv.cvRound( cv.cvmGet(storage, i, c) )
        #if v != 0.0:
            #print v


#cv.cvSmooth(grayimage, grayimage,cv.CV_MEDIAN, 3, 3)

#Display image

highgui.cvShowImage ('GrayScale', grayimage)
Beispiel #15
0
    def timerEvent(self, ev):
        # Fetch a frame from the video camera
        frame = highgui.cvQueryFrame(self.cap)
        img_orig = cv.cvCreateImage(cv.cvSize(frame.width, frame.height),
                                    cv.IPL_DEPTH_8U, frame.nChannels)
        if (frame.origin == cv.IPL_ORIGIN_TL):
            cv.cvCopy(frame, img_orig)
        else:
            cv.cvFlip(frame, img_orig, 0)

        # Create a grey frame to clarify data
        img_grey = cv.cvCreateImage(cv.cvSize(img_orig.width, img_orig.height),
                                    8, 1)
        cv.cvCvtColor(img_orig, img_grey, cv.CV_BGR2GRAY)
        # Detect objects within the frame
        self.faces_storage = cv.cvCreateMemStorage(0)
        faces = self.detect_faces(img_grey)
        self.circles_storage = cv.cvCreateMemStorage(0)
        circles = self.detect_circles(img_grey)
        self.squares_storage = cv.cvCreateMemStorage(0)
        squares = self.detect_squares(img_grey, img_orig)
        self.lines_storage = cv.cvCreateMemStorage(0)
        lines = self.detect_lines(img_grey, img_orig)

        # Draw faces
        if faces:
            for face in faces:
                pt1, pt2 = self.face_points(face)
                cv.cvRectangle(img_orig, pt1, pt2, cv.CV_RGB(255, 0, 0), 3, 8,
                               0)

        # Draw lines
        if lines:
            for line in lines:
                cv.cvLine(img_orig, line[0], line[1], cv.CV_RGB(255, 255, 0),
                          3, 8)
        # Draw circles
        if circles:
            for circle in circles:
                cv.cvCircle(
                    img_orig,
                    cv.cvPoint(cv.cvRound(circle[0]), cv.cvRound(circle[1])),
                    cv.cvRound(circle[2]), cv.CV_RGB(0, 0, 255), 3, 8, 0)

        # Draw squares
        if squares:
            i = 0
            while i < squares.total:
                pt = []
                # read 4 vertices
                pt.append(squares[i])
                pt.append(squares[i + 1])
                pt.append(squares[i + 2])
                pt.append(squares[i + 3])
                ## draw the square as a closed polyline
                cv.cvPolyLine(img_orig, [pt], 1, cv.CV_RGB(0, 255, 0), 3,
                              cv.CV_AA, 0)
                i += 4

        # Resize the image to display properly within the window
        #	CV_INTER_NN - nearest-neigbor interpolation,
        #	CV_INTER_LINEAR - bilinear interpolation (used by default)
        #	CV_INTER_AREA - resampling using pixel area relation. (preferred for image decimation)
        #	CV_INTER_CUBIC - bicubic interpolation.
        img_display = cv.cvCreateImage(cv.cvSize(self.width(), self.height()),
                                       8, 3)
        cv.cvResize(img_orig, img_display, cv.CV_INTER_NN)
        img_pil = adaptors.Ipl2PIL(img_display)
        s = StringIO()
        img_pil.save(s, "PNG")
        s.seek(0)
        q_img = QImage()
        q_img.loadFromData(s.read())
        bitBlt(self, 0, 0, q_img)
Beispiel #16
0
def on_trackbar1(position):
	global pos1 
	global pos2
	global pos3
	global pos4
	global pos5
	global pos6
	global pos7
	global img
	global gray
	global edges
	print
	print position, pos2, pos3, pos4, pos5, pos6, pos7

	temp = cv.cvCloneImage(img)
	gray = cv.cvCreateImage(cv.cvGetSize(temp), 8, 1)	
	edges = cv.cvCreateImage(cv.cvGetSize(temp), 8, 1)
	dst =  cv.cvCreateImage( cv.cvSize(256,256), 8, 3 )
	

	src = cv.cvCloneImage(img)
	src2 = cv.cvCreateImage( cv.cvGetSize(src), 8, 3 );
	cv.cvCvtColor(img, gray, cv.CV_BGR2GRAY)

	cv.cvCanny(gray, edges, position, pos2, 3)
	cv.cvSmooth(edges, edges, cv.CV_GAUSSIAN, 9, 9)

	storage = cv.cvCreateMat(50, 1, cv.CV_32FC3)
	cv.cvSetZero(storage)
	try:
		circles = cv.cvHoughCircles(gray, storage, cv.CV_HOUGH_GRADIENT, 1, float(pos3), float(pos2), float(pos4), long(pos5),long(pos6) )
		#print storage
		for i in storage:
			print "Center: ", i[0], i[1], "  Radius: ", i[2]
			center = cv.cvRound(i[0]), cv.cvRound(i[1])
			radius = cv.cvRound(i[2])
			cv.cvCircle(temp, (center), radius, cv.CV_RGB(255, 0, 0), 1, cv.CV_AA, 0 ) 
			cv.cvCircle(edges, (center), radius, cv.CV_RGB(255, 255, 255), 1, cv.CV_AA, 0 ) 
			if radius > 200:
				print "Circle found over 200 Radius"
				center_crop_topleft = (center[0]-(radius - pos7)), (center[1]-(radius - pos7))
				center_crop_bottomright = (center[0]+(radius - pos7)), (center[1]+(radius - pos7))
				print "crop top left:     ", center_crop_topleft
				print "crop bottom right: ", center_crop_bottomright
				center_crop = cv.cvGetSubRect(src, (center_crop_topleft[0], center_crop_topleft[1] , (center_crop_bottomright[0] - center_crop_topleft[0]), (center_crop_bottomright[1] - center_crop_topleft[1])  ))
				#center_crop = cv.cvGetSubRect(src, (50, 50, radius/2, radius/2))
				cvShowImage( "center_crop", center_crop )
				print "center_crop created"
				

				#mark found circle's center with blue point and blue circle of pos 7 radius
				cv.cvCircle(temp ,(center), 2, cv.CV_RGB(0, 0, 255), 3, cv.CV_AA, 0 ) 	
				cv.cvCircle(temp ,(center), (radius - pos7), cv.CV_RGB(0, 0, 255), 3, cv.CV_AA, 0 ) 
				#cvLogPolar(src, dst, (center), 48, CV_INTER_LINEAR	+CV_WARP_FILL_OUTLIERS )
				#this will draw a smaller cirle outlining the center circle				
				#pos7 = int(pos7 /2.5)
				#cv.cvCircle(dst  ,(img_size.width-pos7, 0), 2, cv.CV_RGB(0, 0, 255), 3, cv.CV_AA, 0 )
				#cv.cvLine(dst, (img_size.width-pos7-1, 0), (img_size.width-pos7-1, img_size.height), cv.CV_RGB(0, 0, 255),1,8,0)
				#cvShowImage( "log-polar", dst )
				
				
				#print radius, (radius-pos7)
				
				#cropped = cv.cvCreateImage( (pos7, img_size.height), 8, 3)
				#cropped2 = cv.cvCreateImage( (pos7, img_size.height), 8, 3)
				
				#coin_edge_img = cv.cvGetSubRect(dst, (img_size.width-pos7, 0, pos7 ,img_size.height ))

				#to create the center cropped part of coin
				#img_size = cvGetSize(scr)

				#cvCopy(coin_edge_img, cropped)
				#cvSaveImage("temp.png", cropped)
				#im = Image.open("temp.png").rotate(90)
				#print "pil image size = ", im.size[0], im.size[1]
				#im = im.resize((im.size[0]*2, im.size[1]*2))
				#print "pil image size = ", im.size
				#im.show()
				#im.save("temp2.png")
				cropped2 = highgui.cvLoadImage("temp2.png")
                                #cvShowImage( "cropped", cropped2)

	except:
		print "Exception:", sys.exc_info()[0] 
		print position, pos2, pos3, pos4, pos5, pos6, pos7
		pass

	highgui.cvShowImage("edges", edges)
	#cvShowImage( "log-polar", dst )
	cvShowImage(wname, temp)
Beispiel #17
0
def process_image( slider_pos ): 
    """
    Define trackbar callback functon. This function find contours,
    draw it and approximate it by ellipses.
    """
    stor = cv.cvCreateMemStorage(0);
    
    # Threshold the source image. This needful for cv.cvFindContours().
    cv.cvThreshold( image03, image02, slider_pos, 255, cv.CV_THRESH_BINARY );
    
    # Find all contours.
    nb_contours, cont = cv.cvFindContours (image02,
            stor,
            cv.sizeof_CvContour,
            cv.CV_RETR_LIST,
            cv.CV_CHAIN_APPROX_NONE,
            cv.cvPoint (0,0))
    
    # Clear images. IPL use.
    cv.cvZero(image02);
    cv.cvZero(image04);
    
    # This cycle draw all contours and approximate it by ellipses.
    for c in cont.hrange():
        count = c.total; # This is number point in contour

        # Number point must be more than or equal to 6 (for cv.cvFitEllipse_32f).        
        if( count < 6 ):
            continue;
        
        # Alloc memory for contour point set.    
        PointArray = cv.cvCreateMat(1, count, cv.CV_32SC2)
        PointArray2D32f= cv.cvCreateMat( 1, count, cv.CV_32FC2)
        
        # Get contour point set.
        cv.cvCvtSeqToArray(c, PointArray, cv.cvSlice(0, cv.CV_WHOLE_SEQ_END_INDEX));
        
        # Convert CvPoint set to CvBox2D32f set.
        cv.cvConvert( PointArray, PointArray2D32f )
        
        box = cv.CvBox2D()

        # Fits ellipse to current contour.
        box = cv.cvFitEllipse2(PointArray2D32f);
        
        # Draw current contour.
        cv.cvDrawContours(image04, c, cv.CV_RGB(255,255,255), cv.CV_RGB(255,255,255),0,1,8,cv.cvPoint(0,0));
        
        # Convert ellipse data from float to integer representation.
        center = cv.CvPoint()
        size = cv.CvSize()
        center.x = cv.cvRound(box.center.x);
        center.y = cv.cvRound(box.center.y);
        size.width = cv.cvRound(box.size.width*0.5);
        size.height = cv.cvRound(box.size.height*0.5);
        box.angle = -box.angle;
        
        # Draw ellipse.
        cv.cvEllipse(image04, center, size,
                  box.angle, 0, 360,
                  cv.CV_RGB(0,0,255), 1, cv.CV_AA, 0);
    
    # Show image. HighGUI use.
    highgui.cvShowImage( "Result", image04 );
            scale = 0.

        # scale the histograms
        cv.cvConvertScale (hist.bins, hist.bins, scale, 0)

        # clear the histogram image
        cv.cvSetZero (histimg)

        # compute the width for each bin do display
        bin_w = histimg.width / hdims
        
        for  i in range (hdims):
            # for all the bins

            # get the value, and scale to the size of the hist image
            val = cv.cvRound (cv.cvGetReal1D (hist.bins, i)
                              * histimg.height / 255)

            # compute the color
            color = hsv2rgb (i * 180. / hdims)

            # draw the rectangle in the wanted color
            cv.cvRectangle (histimg,
                            cv.cvPoint (i * bin_w, histimg.height),
                            cv.cvPoint ((i + 1) * bin_w, histimg.height - val),
                            color, -1, 8, 0)

        # we can now display the images
        highgui.cvShowImage ('Camera', frame)
        highgui.cvShowImage ('Histogram', histimg)

        # handle events
Beispiel #19
0
def process_image(slider_pos):
    """
    Define trackbar callback functon. This function find contours,
    draw it and approximate it by ellipses.
    """
    stor = cv.cvCreateMemStorage(0)

    # Threshold the source image. This needful for cv.cvFindContours().
    cv.cvThreshold(image03, image02, slider_pos, 255, cv.CV_THRESH_BINARY)

    # Find all contours.
    nb_contours, cont = cv.cvFindContours(image02, stor, cv.sizeof_CvContour,
                                          cv.CV_RETR_LIST,
                                          cv.CV_CHAIN_APPROX_NONE,
                                          cv.cvPoint(0, 0))

    # Clear images. IPL use.
    cv.cvZero(image02)
    cv.cvZero(image04)

    # This cycle draw all contours and approximate it by ellipses.
    for c in cont.hrange():
        count = c.total
        # This is number point in contour

        # Number point must be more than or equal to 6 (for cv.cvFitEllipse_32f).
        if (count < 6):
            continue

        # Alloc memory for contour point set.
        PointArray = cv.cvCreateMat(1, count, cv.CV_32SC2)
        PointArray2D32f = cv.cvCreateMat(1, count, cv.CV_32FC2)

        # Get contour point set.
        cv.cvCvtSeqToArray(c, PointArray,
                           cv.cvSlice(0, cv.CV_WHOLE_SEQ_END_INDEX))

        # Convert CvPoint set to CvBox2D32f set.
        cv.cvConvert(PointArray, PointArray2D32f)

        box = cv.CvBox2D()

        # Fits ellipse to current contour.
        box = cv.cvFitEllipse2(PointArray2D32f)

        # Draw current contour.
        cv.cvDrawContours(image04, c, cv.CV_RGB(255, 255, 255),
                          cv.CV_RGB(255, 255, 255), 0, 1, 8, cv.cvPoint(0, 0))

        # Convert ellipse data from float to integer representation.
        center = cv.CvPoint()
        size = cv.CvSize()
        center.x = cv.cvRound(box.center.x)
        center.y = cv.cvRound(box.center.y)
        size.width = cv.cvRound(box.size.width * 0.5)
        size.height = cv.cvRound(box.size.height * 0.5)
        box.angle = -box.angle

        # Draw ellipse.
        cv.cvEllipse(image04, center, size, box.angle, 0, 360,
                     cv.CV_RGB(0, 0, 255), 1, cv.CV_AA, 0)

    # Show image. HighGUI use.
    highgui.cvShowImage("Result", image04)