Beispiel #1
0
def test_daulbasis_init():
    db = DualBasis()
    assert isinstance(db, DualBasis)
    dbe = DualBasisElement(tensor_names=['A'] * 5,
                           tensor_coeffs=[1] * 5,
                           tensor_elements=[(i, i) for i in range(5)])
    db = DualBasis(elements=[dbe])
    assert db[0] == dbe
    assert len(db) == 1
    for tdbe in db:
        assert tdbe == dbe

    db2 = db + dbe
    assert isinstance(db2, DualBasis)
    assert len(db2) == 2

    tdbe = DualBasisElement(tensor_names=['B'] * 5,
                            tensor_coeffs=[1] * 5,
                            tensor_elements=[(i, i) for i in range(5)])
    tdb = DualBasis(elements=[tdbe])
    db3 = db + tdb
    assert isinstance(db3, DualBasis)
    assert len(db3) == 2

    db4 = tdbe + db
    assert len(db4) == 2

    with pytest.raises(TypeError):
        _ = DualBasis(elements=[tdbe, 4])

    with pytest.raises(TypeError):
        db = DualBasis(elements=[tdbe])
        _ = db + 4
Beispiel #2
0
def opdm_to_ohdm_mapping(dim: int) -> DualBasis:
    """
    Map the ck to kc

    D1 + Q1 = I

    Args:
        dim: dimension of the spin-orbital basis
    Returns:
        DualBasis for the 1-RDM representability constraint
    """
    dbe_list = []
    for i in range(dim):
        for j in range(i, dim):
            dbe = DualBasisElement()
            if i != j:
                dbe.add_element('ck', (i, j), 0.5)
                dbe.add_element('ck', (j, i), 0.5)
                dbe.add_element('kc', (j, i), 0.5)
                dbe.add_element('kc', (i, j), 0.5)
                dbe.dual_scalar = 0.0
            else:
                dbe.add_element('ck', (i, j), 1.0)
                dbe.add_element('kc', (i, j), 1.0)
                dbe.dual_scalar = 1.0

            # db += dbe
            dbe_list.append(dbe)

    return DualBasis(elements=dbe_list)  # db
Beispiel #3
0
def tpdm_to_opdm_mapping(dim: int, normalization: Union[float,
                                                        int]) -> DualBasis:
    """
    Construct the DualBasis for mapping of the tpdm to the opdm

    Args:
        dim: dimension of the spin-orbital basis.
        normalization: Scalar for mapping tpdm to opdm.  Generally, this is
                       1 / (N - 1) where N is the number of electrons.
    Returns:
        DualBasis for all dim^2
    """
    db_basis = DualBasis()
    for i in range(dim):
        for j in range(i, dim):
            dbe = DualBasisElement()
            # contract over tpdm terms
            for r in range(dim):
                # duplicate entries get summed in DualBasisElement
                dbe.add_element('cckk', (i, r, j, r), 0.5)
                dbe.add_element('cckk', (j, r, i, r), 0.5)

            # opdm terms
            dbe.add_element('ck', (i, j), -0.5 * normalization)
            dbe.add_element('ck', (j, i), -0.5 * normalization)
            dbe.simplify()
            db_basis += dbe

    return db_basis
Beispiel #4
0
def tpdm_antisymmetry_constraint(dim: int) -> DualBasis:
    """
    The dual basis elements representing the antisymmetry constraints

    :param dim: spinless Fermion basis rank
    :return: the dual basis of antisymmetry_constraints
    :rtype: DualBasis
    """
    # dual_basis = DualBasis()
    dbe_list = []
    for p, q, r, s in product(range(dim), repeat=4):
        if p * dim + q <= r * dim + s:
            if p < q and r < s:
                tensor_elements = [
                    tuple(indices) for indices in _coord_generator(p, q, r, s)
                ]
                tensor_names = ['cckk'] * len(tensor_elements)
                tensor_coeffs = [0.5] * len(tensor_elements)
                dbe = DualBasisElement()
                for n, e, c in zip(tensor_names, tensor_elements,
                                   tensor_coeffs):
                    dbe.add_element(n, e, c)

                # dual_basis += dbe
                dbe_list.append(dbe)

    return DualBasis(elements=dbe_list)
Beispiel #5
0
    def __init__(self, tensors, dual_basis=DualBasis()):
        """
        A collection of tensor objects with maps from name to tensor

        Args:
            tensors: a dictionary or tuple of tensors and their associated call
                     name.
            DualBasisElement dual_basis: the set of linear operators restricting
                                         the feasible elements of the linear
                                         space generated by vectorizing the
                                         tensors.
        """
        if not isinstance(tensors, list):
            raise TypeError("MultiTensor accepts a list")

        # this preserves the order the user passes with the tensors
        self.tensors = TMap(tensors)

        # since all the tensors are indexed from zero...I need to know their
        # numbering offset when combined with everything.
        self.off_set_map = self.make_offset_dict(self.tensors)

        # An iterable object that provides access to the dual basis elements
        self.dual_basis = dual_basis
        self.vec_dim = sum([vec.size for vec in self.tensors])
Beispiel #6
0
def test_dual_basis_element():
    de = DualBasisElement()
    de_2 = DualBasisElement()
    db_0 = de + de_2
    assert isinstance(db_0, DualBasis)
    db_1 = db_0 + db_0
    assert isinstance(db_1, DualBasis)

    dim = 2
    opdm = np.random.random((dim, dim))
    opdm = (opdm.T + opdm) / 2
    opdm = Tensor(tensor=opdm, name='opdm')
    rdm = MultiTensor([opdm])

    def generate_dual_basis_element(i, j):
        element = DualBasisElement(tensor_names=["opdm"],
                                   tensor_elements=[(i, j)],
                                   tensor_coeffs=[-1.0],
                                   bias=1 if i == j else 0,
                                   scalar=0)
        return element

    opdm_to_oqdm_map = DualBasis()
    for _, idx in opdm.all_iterator():
        i, j = idx
        opdm_to_oqdm_map += generate_dual_basis_element(i, j)

    rdm.dual_basis = opdm_to_oqdm_map
    A, b, _ = rdm.synthesize_dual_basis()
    Adense = A.todense()
    opdm_flat = opdm.data.reshape((-1, 1))
    oqdm = Adense.dot(opdm_flat)
    test_oqdm = oqdm + b.todense()
    assert np.allclose(test_oqdm.reshape((dim, dim)), np.eye(dim) - opdm.data)
Beispiel #7
0
def spin_orbital_linear_constraints(
        dim: int,
        num_alpha: Union[int, float],
        num_beta: Union[int, float],
        constraint_list: List[str],
        sz: Optional[Union[None, float, int]] = None) -> DualBasis:
    """
    Construct dual basis constraints for 2-positivity in a spin-orbital
    basis

    Args:
        dim: Dimension of the spin-orbital basis
        num_alpha: number of spin-up electrons.
        num_beta: number of spin-down electrons.
        constraint_list: list of which matrices to include in the 2-pos set.
        sz: target magnetic quantum number.

    Returns:
        DualBasis element.
    """
    N = num_alpha + num_beta
    dual_basis = DualBasis()
    if 'cckk' in constraint_list:
        # Natural constraints on particle-conserving 2-RDMs
        # trace constraint on D2
        dual_basis += tpdm_trace_constraint(dim, N * (N - 1))
        # antisymmetry constraint
        dual_basis += tpdm_antisymmetry_constraint(dim)

    if 'ck' in constraint_list:
        dual_basis += tpdm_to_opdm_mapping(dim, N - 1)
        if sz is not None:
            dual_basis += sz_constraint(dim, sz)

        dual_basis += na_constraint(dim, num_alpha)
        dual_basis += nb_constraint(dim, num_beta)

        if 'kc' in constraint_list:
            dual_basis += opdm_to_ohdm_mapping(dim)

    # d2 -> q2
    if 'kkcc' in constraint_list:
        print('tqdm constraints')
        dual_basis += tpdm_to_thdm_mapping(dim)

    # d2 -> g2
    if "ckck" in constraint_list:
        print('phdm constraints')
        dual_basis += tpdm_to_phdm_mapping(dim)

    return dual_basis
Beispiel #8
0
def tpdm_to_thdm_mapping(dim: int) -> DualBasis:
    """
    Generate the dual basis elements for a mapping of the 2-RDM to the
    two-hole-RDM

    Args:
        dim: Dimension of the spin-orbital basis

    Returns:
        DualBasis representing the equality constraint.
    """
    dbe_list = []

    def d2q2element(p: int, q: int, r: int, s: int, factor: Union[float, int])\
            -> DualBasisElement:
        """
        Build the dual basis element for symmetric form of 2-marginal

        :param p: tensor index
        :param q: tensor index
        :param r: tensor index
        :param s: tensor index
        :param factor: scaling coeff for a symmetric constraint
        :return: the dual basis of the mapping
        """
        dbe = DualBasisElement()
        dbe.add_element('cckk', (p, q, r, s), -1.0 * factor)
        dbe.add_element('kkcc', (r, s, p, q), +1.0 * factor)
        if q == s:
            dbe.add_element('ck', (p, r), factor)
        if p == r:
            dbe.add_element('ck', (q, s), factor)
        if q == r:
            dbe.add_element('ck', (p, s), -1. * factor)
        if p == s:
            dbe.add_element('ck', (q, r), -1. * factor)

        dbe.dual_scalar = (
            kronecker_delta(q, s) * kronecker_delta(p, r) -
            kronecker_delta(q, r) * kronecker_delta(p, s)) * factor
        return dbe

    for i, j, k, l in product(range(dim), repeat=4):
        if i * dim + j <= k * dim + l:
            db_element = d2q2element(i, j, k, l, 0.5)
            db_element_2 = d2q2element(k, l, i, j, 0.5)
            dbe_list.append(db_element.join_elements(db_element_2))

    return DualBasis(elements=dbe_list)
Beispiel #9
0
def nb_constraint(dim, nb):
    """
    Constraint the trace of the alpha block of the opdm to equal the number
    of spin-down electrons

    Args:
        dim: Dimension of the spin-orbital basis.
        na: Number of spin down electrons

    Returns:
        DualBasis representing the cosntraint that is length 1
    """
    dbe = DualBasisElement()
    for i in range(dim // 2):
        dbe.add_element('ck', (2 * i + 1, 2 * i + 1), 1.0)
    dbe.dual_scalar = nb
    return DualBasis(elements=[dbe])
Beispiel #10
0
def sz_constraint(dim: int, sz: Union[float, int]) -> DualBasis:
    """
    Constraint on the 1-RDM

    Args:
        dim: dimension of the spin-orbital basis.
        sz: expectation value of the magnetic quantum number.

    Returns:
        DualBasis
    """
    dbe = DualBasisElement()
    for i in range(dim // 2):
        dbe.add_element('ck', (2 * i, 2 * i), 0.5)
        dbe.add_element('ck', (2 * i + 1, 2 * i + 1), -0.5)
    dbe.dual_scalar = sz
    return DualBasis(elements=[dbe])
Beispiel #11
0
def na_constraint(dim: int, na: Union[float, int]) -> DualBasis:
    """
    Constraint the trace of the alpha block of the opdm to equal the number
    of spin-up electrons

    Args:
        dim: Dimension of the spin-orbital basis.
        na: Number of spin up electrons

    Returns:
        DualBasis representing the cosntraint that is length 1
    """

    dbe = DualBasisElement()
    for i in range(dim // 2):
        dbe.add_element('ck', (2 * i, 2 * i), 1.0)
    dbe.dual_scalar = na
    return DualBasis(elements=[dbe])
Beispiel #12
0
def test_synthesis_dualbasis():
    a = np.random.random((5, 5))
    b = np.random.random((4, 4))
    c = np.random.random((3, 3))
    at = Tensor(tensor=a, name='a')
    bt = Tensor(tensor=b, name='b')
    ct = Tensor(tensor=c, name='c')
    dbe = DualBasisElement()
    dbe.add_element('a', (0, 1), 4)
    dbe.add_element('a', (1, 0), 4)
    mt = MultiTensor([at, bt, ct], DualBasis(elements=[dbe]))

    A, c, b = mt.synthesize_dual_basis()
    assert isinstance(A, sp.sparse.csr_matrix)
    assert isinstance(c, sp.sparse.csr_matrix)
    assert isinstance(b, sp.sparse.csr_matrix)
    assert A.shape == (1, 50)
    assert b.shape == (1, 1)
    assert c.shape == (1, 1)
Beispiel #13
0
def tpdm_to_phdm_mapping(dim: int) -> DualBasis:
    """

    Args:
        dim: Dimension of the spin-orbital basis

    Returns:
        DualBasis representing the equality constraint
    """
    dbe_list = []

    def g2d2map(p: int,
                q: int,
                r: int,
                s: int,
                factor: Optional[Union[float, int]] = 1) -> DualBasisElement:
        """
        Build the dual basis element for a symmetric 2-marginal

        :param p: tensor index
        :param q: tensor index
        :param r: tensor index
        :param s: tensor index
        :param factor: weighting of the element
        :return: the dual basis element
        """
        dbe = DualBasisElement()
        if q == s:
            dbe.add_element('ck', (p, r), -1. * factor)
        dbe.add_element('ckck', (p, s, r, q), 1.0 * factor)
        dbe.add_element('cckk', (p, q, r, s), 1.0 * factor)
        dbe.dual_scalar = 0

        return dbe

    for i, j, k, l in product(range(dim), repeat=4):
        if i * dim + j <= k * dim + l:
            db_element = g2d2map(i, j, k, l, factor=0.5)
            db_element_2 = g2d2map(k, l, i, j, factor=0.5)
            dbe_list.append(db_element.join_elements(db_element_2))

    return DualBasis(elements=dbe_list)