Beispiel #1
0
    def test_indices(self):
        size = 10

        root = Group()

        root.add('P1', ParamComp('x', np.zeros(size)))
        root.add(
            'C1',
            ExecComp('y = x * 2.',
                     y=np.zeros(size // 2),
                     x=np.zeros(size // 2)))
        root.add(
            'C2',
            ExecComp('y = x * 3.',
                     y=np.zeros(size // 2),
                     x=np.zeros(size // 2)))

        root.connect('P1.x', "C1.x", src_indices=list(range(size // 2)))
        root.connect('P1.x', "C2.x", src_indices=list(range(size // 2, size)))

        prob = Problem(root)
        prob.setup(check=False)

        root.P1.unknowns['x'][0:size // 2] += 1.0
        root.P1.unknowns['x'][size // 2:size] -= 1.0

        prob.run()

        assert_rel_error(self, root.C1.params['x'], np.ones(size // 2), 0.0001)
        assert_rel_error(self, root.C2.params['x'], -np.ones(size // 2),
                         0.0001)
Beispiel #2
0
    def test_parab_FD_subbed_Pcomps(self):

        model = Problem(impl=impl)
        root = model.root = Group()
        par = root.add('par', ParallelGroup())

        par.add('s1', MP_Point(root=2.0))
        par.add('s2', MP_Point(root=3.0))

        root.add('sumcomp', ExecComp('sum = x1+x2'))
        root.connect('par.s1.c.y', 'sumcomp.x1')
        root.connect('par.s2.c.y', 'sumcomp.x2')

        driver = model.driver = pyOptSparseDriver()
        driver.add_param('par.s1.p.x', low=-100, high=100)
        driver.add_param('par.s2.p.x', low=-100, high=100)
        driver.add_objective('sumcomp.sum')

        root.fd_options['force_fd'] = True

        model.setup(check=False)
        model.run()

        if not MPI or self.comm.rank == 0:
            assert_rel_error(self, model['par.s1.p.x'], 2.0, 1.e-6)

        if not MPI or self.comm.rank == 1:
            assert_rel_error(self, model['par.s2.p.x'], 3.0, 1.e-6)
Beispiel #3
0
    def test_parab_FD(self):

        model = Problem(impl=impl)
        root = model.root = Group()
        par = root.add('par', ParallelGroup())

        par.add('c1', Parab1D(root=2.0))
        par.add('c2', Parab1D(root=3.0))

        root.add('p1', ParamComp('x', val=0.0))
        root.add('p2', ParamComp('x', val=0.0))
        root.connect('p1.x', 'par.c1.x')
        root.connect('p2.x', 'par.c2.x')

        root.add('sumcomp', ExecComp('sum = x1+x2'))
        root.connect('par.c1.y', 'sumcomp.x1')
        root.connect('par.c2.y', 'sumcomp.x2')

        driver = model.driver = pyOptSparseDriver()
        driver.add_param('p1.x', low=-100, high=100)
        driver.add_param('p2.x', low=-100, high=100)
        driver.add_objective('sumcomp.sum')

        root.fd_options['force_fd'] = True

        model.setup(check=False)
        model.run()

        if not MPI or self.comm.rank == 0:
            assert_rel_error(self, model['p1.x'], 2.0, 1.e-6)
            assert_rel_error(self, model['p2.x'], 3.0, 1.e-6)
Beispiel #4
0
    def test_parab_FD_subbed_Pcomps(self):

        model = Problem(impl=impl)
        root = model.root = Group()
        par = root.add("par", ParallelGroup())

        par.add("s1", MP_Point(root=2.0))
        par.add("s2", MP_Point(root=3.0))

        root.add("sumcomp", ExecComp("sum = x1+x2"))
        root.connect("par.s1.c.y", "sumcomp.x1")
        root.connect("par.s2.c.y", "sumcomp.x2")

        driver = model.driver = pyOptSparseDriver()
        driver.add_param("par.s1.p.x", low=-100, high=100)
        driver.add_param("par.s2.p.x", low=-100, high=100)
        driver.add_objective("sumcomp.sum")

        root.fd_options["force_fd"] = True

        model.setup(check=False)
        model.run()

        if not MPI or self.comm.rank == 0:
            assert_rel_error(self, model["par.s1.p.x"], 2.0, 1.0e-6)

        if not MPI or self.comm.rank == 1:
            assert_rel_error(self, model["par.s2.p.x"], 3.0, 1.0e-6)
Beispiel #5
0
    def test_parab_FD(self):

        model = Problem(impl=impl)
        root = model.root = Group()
        par = root.add("par", ParallelGroup())

        par.add("c1", Parab1D(root=2.0))
        par.add("c2", Parab1D(root=3.0))

        root.add("p1", ParamComp("x", val=0.0))
        root.add("p2", ParamComp("x", val=0.0))
        root.connect("p1.x", "par.c1.x")
        root.connect("p2.x", "par.c2.x")

        root.add("sumcomp", ExecComp("sum = x1+x2"))
        root.connect("par.c1.y", "sumcomp.x1")
        root.connect("par.c2.y", "sumcomp.x2")

        driver = model.driver = pyOptSparseDriver()
        driver.add_param("p1.x", low=-100, high=100)
        driver.add_param("p2.x", low=-100, high=100)
        driver.add_objective("sumcomp.sum")

        root.fd_options["force_fd"] = True

        model.setup(check=False)
        model.run()

        if not MPI or self.comm.rank == 0:
            assert_rel_error(self, model["p1.x"], 2.0, 1.0e-6)
            assert_rel_error(self, model["p2.x"], 3.0, 1.0e-6)
    def test_one_dim_bi_fidelity_training(self):

        mm = MultiFiMetaModel(nfi=2)
        mm.add_param('x', 0.)
        surr = MockSurrogate()
        mm.add_output('y', 0., surrogate = surr)

        prob = Problem(Group())
        prob.root.add('mm', mm)
        prob.setup(check=False)

        prob['mm.train:x']= [0.0, 0.4, 1.0]
        prob['mm.train:x_fi2'] = [0.1, 0.2, 0.3, 0.5, 0.6,
                                  0.7, 0.8, 0.9, 0.0, 0.4, 1.0]
        prob['mm.train:y'] = [3.02720998, 0.11477697, 15.82973195]
        prob['mm.train:y_fi2'] = [-9.32828839, -8.31986355, -7.00778837,
                                  -4.54535129, -4.0747189 , -5.30287702,
                                  -4.47456522, 1.85597517, -8.48639501,
                                  -5.94261151, 7.91486597]
        expected_xtrain=[np.array([[0.0], [0.4], [1.0]]),
                         np.array([[0.1], [0.2], [0.3], [0.5], [0.6], [0.7],
                                   [0.8], [0.9], [0.0], [0.4], [1.0]])]
        expected_ytrain=[np.array([[  3.02720998], [0.11477697], [15.82973195]]),
                         np.array([[-9.32828839], [-8.31986355], [-7.00778837], [-4.54535129],
                                   [-4.0747189], [-5.30287702], [-4.47456522], [1.85597517],
                                   [-8.48639501], [-5.94261151],  [7.91486597]])]
        prob.run()
        np.testing.assert_array_equal(surr.xtrain[0], expected_xtrain[0])
        np.testing.assert_array_equal(surr.xtrain[1], expected_xtrain[1])
        np.testing.assert_array_equal(surr.ytrain[0], expected_ytrain[0])
        np.testing.assert_array_equal(surr.ytrain[1], expected_ytrain[1])
Beispiel #7
0
    def test_double_arraycomp(self):
        # Mainly testing a bug in the array return for multiple arrays

        group = Group()
        group.add('x_param1', IndepVarComp('x1', np.ones((2))), promotes=['*'])
        group.add('x_param2', IndepVarComp('x2', np.ones((2))), promotes=['*'])
        group.add('mycomp', DoubleArrayComp(), promotes=['*'])

        prob = Problem(impl=impl)
        prob.root = group
        prob.root.ln_solver = PetscKSP()
        prob.setup(check=False)
        prob.run()

        Jbase = group.mycomp.JJ

        J = prob.calc_gradient(['x1', 'x2'], ['y1', 'y2'], mode='fwd',
                               return_format='array')
        diff = np.linalg.norm(J - Jbase)
        assert_rel_error(self, diff, 0.0, 1e-8)

        J = prob.calc_gradient(['x1', 'x2'], ['y1', 'y2'], mode='fd',
                               return_format='array')
        diff = np.linalg.norm(J - Jbase)
        assert_rel_error(self, diff, 0.0, 1e-8)

        J = prob.calc_gradient(['x1', 'x2'], ['y1', 'y2'], mode='rev',
                               return_format='array')
        diff = np.linalg.norm(J - Jbase)
        assert_rel_error(self, diff, 0.0, 1e-8)
Beispiel #8
0
    def test_vector_inputs(self):

        meta = MetaModel()
        meta.add_param('x', np.zeros(4))
        meta.add_output('y1', 0.)
        meta.add_output('y2', 0.)
        meta.default_surrogate = FloatKrigingSurrogate()

        prob = Problem(Group())
        prob.root.add('meta', meta)
        prob.setup(check=False)

        prob['meta.train:x'] = [
            [1.0, 1.0, 1.0, 1.0],
            [2.0, 1.0, 1.0, 1.0],
            [1.0, 2.0, 1.0, 1.0],
            [1.0, 1.0, 2.0, 1.0],
            [1.0, 1.0, 1.0, 2.0]
        ]
        prob['meta.train:y1'] = [3.0, 2.0, 1.0, 6.0, -2.0]
        prob['meta.train:y2'] = [1.0, 4.0, 7.0, -3.0, 3.0]

        prob['meta.x'] = [1.0, 2.0, 1.0, 1.0]
        prob.run()

        assert_rel_error(self, prob['meta.y1'], 1.0, .00001)
        assert_rel_error(self, prob['meta.y2'], 7.0, .00001)
Beispiel #9
0
    def test_fan_out_grouped(self):

        prob = Problem(impl=impl)
        prob.root = FanOutGrouped()
        prob.root.ln_solver = PetscKSP()

        prob.setup(check=False)
        prob.run()

        param = 'sub.pgroup.p.x'
        unknown_list = ['sub.comp2.y', "sub.comp3.y"]

        J = prob.calc_gradient([param],
                               unknown_list,
                               mode='fwd',
                               return_format='dict')

        assert_rel_error(self, J[unknown_list[0]][param][0][0], -6.0, 1e-6)
        assert_rel_error(self, J[unknown_list[1]][param][0][0], 15.0, 1e-6)

        J = prob.calc_gradient([param],
                               unknown_list,
                               mode='rev',
                               return_format='dict')
        assert_rel_error(self, J[unknown_list[0]][param][0][0], -6.0, 1e-6)
        assert_rel_error(self, J[unknown_list[1]][param][0][0], 15.0, 1e-6)
Beispiel #10
0
    def test_simple_deriv_xfer(self):

        prob = Problem(impl=impl)
        prob.root = FanInGrouped()
        prob.setup(check=False)

        prob.root.comp3.dpmat[None]['x1'] = 7.
        prob.root.comp3.dpmat[None]['x2'] = 11.
        prob.root._transfer_data(mode='rev', deriv=True)

        if not MPI or self.comm.rank == 0:
            self.assertEqual(prob.root.sub.comp1.dumat[None]['y'], 7.)

        if not MPI or self.comm.rank == 1:
            self.assertEqual(prob.root.sub.comp2.dumat[None]['y'], 11.)

        prob.root.comp3.dpmat[None]['x1'] = 0.
        prob.root.comp3.dpmat[None]['x2'] = 0.
        self.assertEqual(prob.root.comp3.dpmat[None]['x1'], 0.)
        self.assertEqual(prob.root.comp3.dpmat[None]['x2'], 0.)

        prob.root._transfer_data(mode='fwd', deriv=True)

        self.assertEqual(prob.root.comp3.dpmat[None]['x1'], 7.)
        self.assertEqual(prob.root.comp3.dpmat[None]['x2'], 11.)
Beispiel #11
0
    def test_array_outputs(self):
        meta = MetaModel()
        meta.add_param('x', np.zeros((2, 2)))
        meta.add_output('y', np.zeros(2,))
        meta.default_surrogate = FloatKrigingSurrogate()

        prob = Problem(Group())
        prob.root.add('meta', meta)
        prob.setup(check=False)

        prob['meta.train:x'] = [
            [[1.0, 1.0], [1.0, 1.0]],
            [[2.0, 1.0], [1.0, 1.0]],
            [[1.0, 2.0], [1.0, 1.0]],
            [[1.0, 1.0], [2.0, 1.0]],
            [[1.0, 1.0], [1.0, 2.0]]
        ]

        prob['meta.train:y'] = [[3.0, 1.0],
                                [2.0, 4.0],
                                [1.0, 7.0],
                                [6.0, -3.0],
                                [-2.0, 3.0]]

        prob['meta.x'] = [[1.0, 2.0], [1.0, 1.0]]
        prob.run()

        assert_rel_error(self, prob['meta.y'], np.array([1.0, 7.0]), .00001)
Beispiel #12
0
    def test_parab_FD(self):

        model = Problem(impl=impl)
        root = model.root = Group()
        par = root.add('par', ParallelGroup())

        par.add('c1', Parab1D(root=2.0))
        par.add('c2', Parab1D(root=3.0))

        root.add('p1', ParamComp('x', val=0.0))
        root.add('p2', ParamComp('x', val=0.0))
        root.connect('p1.x', 'par.c1.x')
        root.connect('p2.x', 'par.c2.x')

        root.add('sumcomp', ExecComp('sum = x1+x2'))
        root.connect('par.c1.y', 'sumcomp.x1')
        root.connect('par.c2.y', 'sumcomp.x2')

        driver = model.driver = pyOptSparseDriver()
        driver.add_param('p1.x', low=-100, high=100)
        driver.add_param('p2.x', low=-100, high=100)
        driver.add_objective('sumcomp.sum')

        root.fd_options['force_fd'] = True

        model.setup(check=False)
        model.run()

        if not MPI or self.comm.rank == 0:
            assert_rel_error(self, model['p1.x'], 2.0, 1.e-6)
            assert_rel_error(self, model['p2.x'], 3.0, 1.e-6)
Beispiel #13
0
    def test_converge_diverge_groups(self):

        prob = Problem()
        prob.root = ConvergeDivergeGroups()
        prob.root.ln_solver = ExplicitSolver()
        prob.setup(check=False)
        prob.run()

        # Make sure value is fine.
        assert_rel_error(self, prob['comp7.y1'], -102.7, 1e-6)

        param_list = ['p.x']
        unknown_list = ['comp7.y1']

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fwd',
                               return_format='dict')
        assert_rel_error(self, J['comp7.y1']['p.x'][0][0], -40.75, 1e-6)

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='rev',
                               return_format='dict')
        assert_rel_error(self, J['comp7.y1']['p.x'][0][0], -40.75, 1e-6)

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fd',
                               return_format='dict')
        assert_rel_error(self, J['comp7.y1']['p.x'][0][0], -40.75, 1e-6)
Beispiel #14
0
    def test_double_arraycomp(self):
        # Mainly testing a bug in the array return for multiple arrays

        group = Group()
        group.add('x_param1', ParamComp('x1', np.ones((2))), promotes=['*'])
        group.add('x_param2', ParamComp('x2', np.ones((2))), promotes=['*'])
        group.add('mycomp', DoubleArrayComp(), promotes=['*'])

        prob = Problem(impl=impl)
        prob.root = group
        prob.root.ln_solver = PetscKSP()
        prob.setup(check=False)
        prob.run()

        Jbase = group.mycomp.JJ

        J = prob.calc_gradient(['x1', 'x2'], ['y1', 'y2'],
                               mode='fwd',
                               return_format='array')
        diff = np.linalg.norm(J - Jbase)
        assert_rel_error(self, diff, 0.0, 1e-8)

        J = prob.calc_gradient(['x1', 'x2'], ['y1', 'y2'],
                               mode='fd',
                               return_format='array')
        diff = np.linalg.norm(J - Jbase)
        assert_rel_error(self, diff, 0.0, 1e-8)

        J = prob.calc_gradient(['x1', 'x2'], ['y1', 'y2'],
                               mode='rev',
                               return_format='array')
        diff = np.linalg.norm(J - Jbase)
        assert_rel_error(self, diff, 0.0, 1e-8)
Beispiel #15
0
    def test_fan_in_grouped(self):

        prob = Problem(impl=impl)
        prob.root = FanInGrouped()
        prob.root.ln_solver = PetscKSP()

        param_list = ['p1.x1', 'p2.x2']
        unknown_list = ['comp3.y']

        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fwd',
                               return_format='dict')
        assert_rel_error(self, J['comp3.y']['p1.x1'][0][0], -6.0, 1e-6)
        assert_rel_error(self, J['comp3.y']['p2.x2'][0][0], 35.0, 1e-6)

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='rev',
                               return_format='dict')
        assert_rel_error(self, J['comp3.y']['p1.x1'][0][0], -6.0, 1e-6)
        assert_rel_error(self, J['comp3.y']['p2.x2'][0][0], 35.0, 1e-6)
Beispiel #16
0
    def test_simple_array_model2(self):
        prob = Problem()
        prob.root = Group()
        comp = prob.root.add(
            'comp',
            ExecComp('y = mat.dot(x)',
                     x=np.zeros((2, )),
                     y=np.zeros((2, )),
                     mat=np.array([[2., 7.], [5., -3.]])))

        p1 = prob.root.add('p1', ParamComp('x', np.ones([2])))

        prob.root.connect('p1.x', 'comp.x')

        prob.setup(check=False)
        prob.run()

        data = prob.check_partial_derivatives(out_stream=None)

        assert_rel_error(self, data['comp'][('y', 'x')]['abs error'][0], 0.0,
                         1e-5)
        assert_rel_error(self, data['comp'][('y', 'x')]['abs error'][1], 0.0,
                         1e-5)
        assert_rel_error(self, data['comp'][('y', 'x')]['abs error'][2], 0.0,
                         1e-5)
        assert_rel_error(self, data['comp'][('y', 'x')]['rel error'][0], 0.0,
                         1e-5)
        assert_rel_error(self, data['comp'][('y', 'x')]['rel error'][1], 0.0,
                         1e-5)
        assert_rel_error(self, data['comp'][('y', 'x')]['rel error'][2], 0.0,
                         1e-5)
Beispiel #17
0
    def test_simple_array_model(self):
        prob = Problem()
        prob.root = Group()
        prob.root.add(
            'comp',
            ExecComp(['y[0]=2.0*x[0]+7.0*x[1]', 'y[1]=5.0*x[0]-3.0*x[1]'],
                     x=np.zeros([2]),
                     y=np.zeros([2])))

        prob.root.add('p1', ParamComp('x', np.ones([2])))

        prob.root.connect('p1.x', 'comp.x')

        prob.setup(check=False)
        prob.run()

        data = prob.check_partial_derivatives(out_stream=None)

        assert_rel_error(self, data['comp'][('y', 'x')]['abs error'][0], 0.0,
                         1e-5)
        assert_rel_error(self, data['comp'][('y', 'x')]['abs error'][1], 0.0,
                         1e-5)
        assert_rel_error(self, data['comp'][('y', 'x')]['abs error'][2], 0.0,
                         1e-5)
        assert_rel_error(self, data['comp'][('y', 'x')]['rel error'][0], 0.0,
                         1e-5)
        assert_rel_error(self, data['comp'][('y', 'x')]['rel error'][1], 0.0,
                         1e-5)
        assert_rel_error(self, data['comp'][('y', 'x')]['rel error'][2], 0.0,
                         1e-5)
    def test_unequal_training_outputs(self):
        meta = MetaModel()
        meta.add_param('x', 0.)
        meta.add_param('y', 0.)
        meta.add_output('f', 0.)
        meta.default_surrogate = FloatKrigingSurrogate()

        prob = Problem(Group())
        prob.root.add('meta', meta)
        prob.setup(check=False)

        prob['meta.train:x'] = [1.0, 1.0, 1.0, 1.0]
        prob['meta.train:y'] = [1.0, 2.0, 3.0, 4.0]
        prob['meta.train:f'] = [1.0, 1.0]

        prob['meta.x'] = 1.0
        prob['meta.y'] = 1.0

        with self.assertRaises(RuntimeError) as cm:
            prob.run()

        expected = "MetaModel: Each variable must have the same number" \
                   " of training points. Expected 4 but found" \
                   " 2 points for 'f'."

        self.assertEqual(str(cm.exception), expected)
Beispiel #19
0
    def test_unequal_training_inputs(self):

        meta = MetaModel()
        meta.add_param('x', 0.)
        meta.add_param('y', 0.)
        meta.add_output('f', 0.)
        meta.default_surrogate = FloatKrigingSurrogate()

        prob = Problem(Group())
        prob.root.add('meta', meta)
        prob.setup(check=False)

        prob['meta.train:x'] = [1.0, 1.0, 1.0, 1.0]
        prob['meta.train:y'] = [1.0, 2.0]
        prob['meta.train:f'] = [1.0, 1.0, 1.0, 1.0]

        prob['meta.x'] = 1.0
        prob['meta.y'] = 1.0

        with self.assertRaises(RuntimeError) as cm:
            prob.run()

        expected = "MetaModel: Each variable must have the same number" \
                   " of training points. Expected 4 but found" \
                   " 2 points for 'y'."

        self.assertEqual(str(cm.exception), expected)
Beispiel #20
0
    def test_derivatives(self):
        meta = MetaModel()
        meta.add_param('x', 0.)
        meta.add_output('f', 0.)
        meta.default_surrogate = FloatKrigingSurrogate()

        prob = Problem(Group())
        prob.root.add('meta', meta, promotes=['x'])
        prob.root.add('p', IndepVarComp('x', 0.), promotes=['x'])
        prob.setup(check=False)

        prob['meta.train:x'] = [0., .25, .5, .75, 1.]
        prob['meta.train:f'] = [1., .75, .5, .25, 0.]
        prob['x'] = 0.125
        prob.run()

        Jf = prob.calc_gradient(['x'], ['meta.f'], mode='fwd')
        Jr = prob.calc_gradient(['x'], ['meta.f'], mode='rev')

        assert_rel_error(self, Jf[0][0], -1.00011, 1.0e-5)
        assert_rel_error(self, Jr[0][0], -1.00011, 1.0e-5)

        stream = cStringIO()
        prob.check_partial_derivatives(out_stream=stream)

        abs_errors = findall('Absolute Error \(.+\) : (.+)', stream.getvalue())
        self.assertTrue(len(abs_errors) > 0)
        for match in abs_errors:
            abs_error = float(match)
            self.assertTrue(abs_error < 1e-6)
Beispiel #21
0
    def test_converge_diverge_compfd(self):

        prob = Problem(impl=impl)
        prob.root = ConvergeDivergePar()
        prob.root.ln_solver = PetscKSP()

        # fd comp2 and comp5. each is under a par group
        prob.root.par1.comp2.fd_options['force_fd'] = True
        prob.root.par2.comp5.fd_options['force_fd'] = True

        prob.setup(check=False)
        prob.run()

        # Make sure value is fine.
        assert_rel_error(self, prob['comp7.y1'], -102.7, 1e-6)

        indep_list = ['p.x']
        unknown_list = ['comp7.y1']

        J = prob.calc_gradient(indep_list, unknown_list, mode='fwd', return_format='dict')
        assert_rel_error(self, J['comp7.y1']['p.x'][0][0], -40.75, 1e-6)

        J = prob.calc_gradient(indep_list, unknown_list, mode='rev', return_format='dict')
        assert_rel_error(self, J['comp7.y1']['p.x'][0][0], -40.75, 1e-6)

        J = prob.calc_gradient(indep_list, unknown_list, mode='fd', return_format='dict')
        assert_rel_error(self, J['comp7.y1']['p.x'][0][0], -40.75, 1e-6)
Beispiel #22
0
    def test_simple_deriv_xfer(self):

        prob = Problem(impl=impl)
        prob.root = FanInGrouped()
        prob.setup(check=False)

        prob.root.comp3.dpmat[None]['x1'] = 7.
        prob.root.comp3.dpmat[None]['x2'] = 11.
        prob.root._transfer_data(mode='rev', deriv=True)

        if not MPI or self.comm.rank == 0:
            self.assertEqual(prob.root.sub.comp1.dumat[None]['y'], 7.)

        if not MPI or self.comm.rank == 1:
            self.assertEqual(prob.root.sub.comp2.dumat[None]['y'], 11.)

        prob.root.comp3.dpmat[None]['x1'] = 0.
        prob.root.comp3.dpmat[None]['x2'] = 0.
        self.assertEqual(prob.root.comp3.dpmat[None]['x1'], 0.)
        self.assertEqual(prob.root.comp3.dpmat[None]['x2'], 0.)

        prob.root._transfer_data(mode='fwd', deriv=True)

        self.assertEqual(prob.root.comp3.dpmat[None]['x1'], 7.)
        self.assertEqual(prob.root.comp3.dpmat[None]['x2'], 11.)
Beispiel #23
0
    def test_array_inputs(self):
        meta = MetaModel()
        meta.add_param("x", np.zeros((2, 2)))
        meta.add_output("y1", 0.0)
        meta.add_output("y2", 0.0)
        meta.default_surrogate = FloatKrigingSurrogate()

        prob = Problem(Group())
        prob.root.add("meta", meta)
        prob.setup(check=False)

        prob["meta.train:x"] = [
            [[1.0, 1.0], [1.0, 1.0]],
            [[2.0, 1.0], [1.0, 1.0]],
            [[1.0, 2.0], [1.0, 1.0]],
            [[1.0, 1.0], [2.0, 1.0]],
            [[1.0, 1.0], [1.0, 2.0]],
        ]
        prob["meta.train:y1"] = [3.0, 2.0, 1.0, 6.0, -2.0]
        prob["meta.train:y2"] = [1.0, 4.0, 7.0, -3.0, 3.0]

        prob["meta.x"] = [[1.0, 2.0], [1.0, 1.0]]
        prob.run()

        assert_rel_error(self, prob["meta.y1"], 1.0, 0.00001)
        assert_rel_error(self, prob["meta.y2"], 7.0, 0.00001)
Beispiel #24
0
    def test_single_diamond_grouped(self):

        prob = Problem()
        prob.root = SingleDiamondGrouped()
        prob.root.ln_solver = ExplicitSolver()
        prob.setup(check=False)
        prob.run()

        param_list = ['p.x']
        unknown_list = ['comp4.y1', 'comp4.y2']

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fwd',
                               return_format='dict')
        assert_rel_error(self, J['comp4.y1']['p.x'][0][0], 25, 1e-6)
        assert_rel_error(self, J['comp4.y2']['p.x'][0][0], -40.5, 1e-6)

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='rev',
                               return_format='dict')
        assert_rel_error(self, J['comp4.y1']['p.x'][0][0], 25, 1e-6)
        assert_rel_error(self, J['comp4.y2']['p.x'][0][0], -40.5, 1e-6)

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fd',
                               return_format='dict')
        assert_rel_error(self, J['comp4.y1']['p.x'][0][0], 25, 1e-6)
        assert_rel_error(self, J['comp4.y2']['p.x'][0][0], -40.5, 1e-6)
Beispiel #25
0
    def test_unequal_training_outputs(self):
        meta = MetaModel()
        meta.add_param("x", 0.0)
        meta.add_param("y", 0.0)
        meta.add_output("f", 0.0)
        meta.default_surrogate = FloatKrigingSurrogate()

        prob = Problem(Group())
        prob.root.add("meta", meta)
        prob.setup(check=False)

        prob["meta.train:x"] = [1.0, 1.0, 1.0, 1.0]
        prob["meta.train:y"] = [1.0, 2.0, 3.0, 4.0]
        prob["meta.train:f"] = [1.0, 1.0]

        prob["meta.x"] = 1.0
        prob["meta.y"] = 1.0

        with self.assertRaises(RuntimeError) as cm:
            prob.run()

        expected = (
            "MetaModel: Each variable must have the same number"
            " of training points. Expected 4 but found"
            " 2 points for 'f'."
        )

        self.assertEqual(str(cm.exception), expected)
    def test_prom_conns(self):
        # this test mimics some of the connections found in test_nozzle in pycycle. The bug was that
        # an unknown that was connected to one parameter
        # (desVars.Ps_exhaust to nozzle.press_calcs.Ps_exhaust), was not being connected to the
        # other parameters ('nozzle.ideal_flow.chem_eq.n2ls.P', 'nozzle.ideal_flow.mach_calc.Ps',
        # and 'nozzle.ideal_flow.props.tp2props.P') that were connected via input-input connections
        # to nozzle.press_calcs.Ps_exhaust.

        prob = Problem(root=Group())
        root = prob.root
        desVars = root.add("desVars", ParamComp('Ps_exhaust', 1.0), promotes=('Ps_exhaust',))
        nozzle = root.add("nozzle", Group())
        press_calcs = nozzle.add('press_calcs', ExecComp('out=Ps_exhaust'), promotes=('Ps_exhaust',))
        ideal_flow = nozzle.add("ideal_flow", Group())
        chem_eq = ideal_flow.add('chem_eq', Group(), promotes=('P',))
        n2ls = chem_eq.add("n2ls", ExecComp('out=P'), promotes=('P',))
        props = ideal_flow.add("props", Group(), promotes=('P',))
        tp2props = props.add("tp2props", ExecComp('out=P'), promotes=('P',))
        mach_calc = ideal_flow.add("mach_calc", ExecComp('out=Ps'), promotes=('Ps',))

        nozzle.connect('Ps_exhaust', 'ideal_flow.Ps')
        root.connect('Ps_exhaust', 'nozzle.Ps_exhaust')
        ideal_flow.connect('Ps', 'P')

        prob.setup(check=False)

        expected_targets = set(['nozzle.ideal_flow.chem_eq.n2ls.P',
                                'nozzle.press_calcs.Ps_exhaust',
                                'nozzle.ideal_flow.mach_calc.Ps',
                                'nozzle.ideal_flow.props.tp2props.P'])
        self.assertEqual(set(prob.root.connections), expected_targets)

        for tgt in expected_targets:
            self.assertTrue('desVars.Ps_exhaust' in prob.root.connections[tgt])
    def test_one_dim_one_fidelity_training(self):

        mm = MultiFiMetaModel()

        mm.add_param('x', 0.)
        surr = MockSurrogate()
        mm.add_output('y', 0., surrogate = surr)

        prob = Problem(Group())
        prob.root.add('mm', mm)
        prob.setup(check=False)

        prob['mm.train:x'] = [0.0, 0.4, 1.0]
        prob['mm.train:y'] = [3.02720998, 0.11477697, 15.82973195]

        expected_xtrain=[np.array([ [0.0], [0.4], [1.0] ])]
        expected_ytrain=[np.array([ [3.02720998], [0.11477697], [15.82973195] ])]

        prob.run()
        np.testing.assert_array_equal(surr.xtrain, expected_xtrain)
        np.testing.assert_array_equal(surr.ytrain, expected_ytrain)

        expected_xpredict=0.5
        prob['mm.x'] = expected_xpredict
        prob.run()

        np.testing.assert_array_equal(surr.xpredict, expected_xpredict)
Beispiel #28
0
    def test_parab_subbed_Pcomps(self):

        model = Problem(impl=impl)
        root = model.root = Group()
        root.ln_solver = lin_solver()

        par = root.add('par', ParallelGroup())

        par.add('s1', MP_Point(root=2.0))
        par.add('s2', MP_Point(root=3.0))

        root.add('sumcomp', ExecComp('sum = x1+x2'))
        root.connect('par.s1.c.y', 'sumcomp.x1')
        root.connect('par.s2.c.y', 'sumcomp.x2')

        driver = model.driver = pyOptSparseDriver()
        driver.add_param('par.s1.p.x', low=-100, high=100)
        driver.add_param('par.s2.p.x', low=-100, high=100)
        driver.add_objective('sumcomp.sum')

        model.setup(check=False)
        model.run()

        if not MPI or self.comm.rank == 0:
            assert_rel_error(self, model['par.s1.p.x'], 2.0, 1.e-6)

        if not MPI or self.comm.rank == 1:
            assert_rel_error(self, model['par.s2.p.x'], 3.0, 1.e-6)
    def test_fd_options_meta_step_size(self):

        class MetaParaboloid(Component):
            """ Evaluates the equation f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3 """

            def __init__(self):
                super(MetaParaboloid, self).__init__()

                # Params
                self.add_param('x', 1.0, fd_step_size = 1.0e5)
                self.add_param('y', 1.0, fd_step_size = 1.0e5)

                # Unknowns
                self.add_output('f_xy', 0.0)

            def solve_nonlinear(self, params, unknowns, resids):
                """f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3
                Optimal solution (minimum): x = 6.6667; y = -7.3333
                """

                x = params['x']
                y = params['y']

                f_xy = ((x-3.0)**2 + x*y + (y+4.0)**2 - 3.0)
                unknowns['f_xy'] = f_xy

            def jacobian(self, params, unknowns, resids):
                """Analytical derivatives"""

                x = params['x']
                y = params['y']
                J = {}

                J['f_xy', 'x'] = (2.0*x - 6.0 + y)
                J['f_xy', 'y'] = (2.0*y + 8.0 + x)

                return J

        prob = Problem()
        prob.root = Group()
        comp = prob.root.add('comp', MetaParaboloid())
        prob.root.add('p1', ParamComp('x', 15.0))
        prob.root.add('p2', ParamComp('y', 15.0))
        prob.root.connect('p1.x', 'comp.x')
        prob.root.connect('p2.y', 'comp.y')

        comp.fd_options['force_fd'] = True

        prob.setup(check=False)
        prob.run()

        # Make sure bad meta step_size is used
        # Derivative should be way high with this.

        J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
        self.assertGreater(J['comp.f_xy']['p1.x'][0][0], 1000.0)
Beispiel #30
0
    def test_math(self):
        prob = Problem(root=Group())
        C1 = prob.root.add('C1', ExecComp('y=sin(x)', x=2.0))
        self.assertTrue('x' in C1._params_dict)
        self.assertTrue('y' in C1._unknowns_dict)

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, C1.unknowns['y'], math.sin(2.0), 0.00001)
Beispiel #31
0
    def test_math(self):
        prob = Problem(root=Group())
        C1 = prob.root.add('C1', ExecComp('y=sin(x)', x=2.0))
        self.assertTrue('x' in C1._params_dict)
        self.assertTrue('y' in C1._unknowns_dict)

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, C1.unknowns['y'], math.sin(2.0), 0.00001)
Beispiel #32
0
    def test_array(self):
        prob = Problem(root=Group())
        C1 = prob.root.add('C1', ExecComp('y=x[1]', x=np.array([1.,2.,3.]), y=0.0))
        self.assertTrue('x' in C1._params_dict)
        self.assertTrue('y' in C1._unknowns_dict)

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, C1.unknowns['y'], 2.0, 0.00001)
Beispiel #33
0
    def test_mixed_type(self):
        prob = Problem(root=Group())
        C1 = prob.root.add('C1', ExecComp('y=numpy.sum(x)',
                                          x=np.arange(10,dtype=float)))
        self.assertTrue('x' in C1._params_dict)
        self.assertTrue('y' in C1._unknowns_dict)

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, C1.unknowns['y'], 45.0, 0.00001)
Beispiel #34
0
    def test_array(self):
        prob = Problem(root=Group())
        C1 = prob.root.add('C1',
                           ExecComp('y=x[1]', x=np.array([1., 2., 3.]), y=0.0))
        self.assertTrue('x' in C1._params_dict)
        self.assertTrue('y' in C1._unknowns_dict)

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, C1.unknowns['y'], 2.0, 0.00001)
Beispiel #35
0
    def test_array_lhs(self):
        prob = Problem(root=Group())
        C1 = prob.root.add('C1', ExecComp(['y[0]=x[1]', 'y[1]=x[0]'],
                                          x=np.array([1.,2.,3.]), y=np.array([0.,0.])))
        self.assertTrue('x' in C1._params_dict)
        self.assertTrue('y' in C1._unknowns_dict)

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, C1.unknowns['y'], np.array([2.,1.]), 0.00001)
    def test_fd_options_meta_step_size(self):
        class MetaParaboloid(Component):
            """ Evaluates the equation f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3 """
            def __init__(self):
                super(MetaParaboloid, self).__init__()

                # Params
                self.add_param('x', 1.0, fd_step_size=1.0e5)
                self.add_param('y', 1.0, fd_step_size=1.0e5)

                # Unknowns
                self.add_output('f_xy', 0.0)

            def solve_nonlinear(self, params, unknowns, resids):
                """f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3
                Optimal solution (minimum): x = 6.6667; y = -7.3333
                """

                x = params['x']
                y = params['y']

                f_xy = ((x - 3.0)**2 + x * y + (y + 4.0)**2 - 3.0)
                unknowns['f_xy'] = f_xy

            def jacobian(self, params, unknowns, resids):
                """Analytical derivatives"""

                x = params['x']
                y = params['y']
                J = {}

                J['f_xy', 'x'] = (2.0 * x - 6.0 + y)
                J['f_xy', 'y'] = (2.0 * y + 8.0 + x)

                return J

        prob = Problem()
        prob.root = Group()
        comp = prob.root.add('comp', MetaParaboloid())
        prob.root.add('p1', ParamComp('x', 15.0))
        prob.root.add('p2', ParamComp('y', 15.0))
        prob.root.connect('p1.x', 'comp.x')
        prob.root.connect('p2.y', 'comp.y')

        comp.fd_options['force_fd'] = True

        prob.setup(check=False)
        prob.run()

        # Make sure bad meta step_size is used
        # Derivative should be way high with this.

        J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
        self.assertGreater(J['comp.f_xy']['p1.x'][0][0], 1000.0)
Beispiel #37
0
    def test_sellar_derivs_grouped(self):

        prob = Problem(impl=impl)
        prob.root = SellarDerivativesGrouped()
        prob.root.ln_solver = PetscKSP()

        prob.root.mda.nl_solver.options['atol'] = 1e-12
        prob.setup(check=False)
        prob.run()

        # Just make sure we are at the right answer
        assert_rel_error(self, prob['y1'], 25.58830273, .00001)
        assert_rel_error(self, prob['y2'], 12.05848819, .00001)

        param_list = ['x', 'z']
        unknown_list = ['obj', 'con1', 'con2']

        Jbase = {}
        Jbase['con1'] = {}
        Jbase['con1']['x'] = -0.98061433
        Jbase['con1']['z'] = np.array([-9.61002285, -0.78449158])
        Jbase['con2'] = {}
        Jbase['con2']['x'] = 0.09692762
        Jbase['con2']['z'] = np.array([1.94989079, 1.0775421])
        Jbase['obj'] = {}
        Jbase['obj']['x'] = 2.98061392
        Jbase['obj']['z'] = np.array([9.61001155, 1.78448534])

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fwd',
                               return_format='dict')
        for key1, val1 in Jbase.items():
            for key2, val2 in val1.items():
                assert_rel_error(self, J[key1][key2], val2, .00001)

        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='rev',
                               return_format='dict')
        for key1, val1 in Jbase.items():
            for key2, val2 in val1.items():
                assert_rel_error(self, J[key1][key2], val2, .00001)

        prob.root.fd_options['form'] = 'central'
        J = prob.calc_gradient(param_list,
                               unknown_list,
                               mode='fd',
                               return_format='dict')
        for key1, val1 in Jbase.items():
            for key2, val2 in val1.items():
                assert_rel_error(self, J[key1][key2], val2, .00001)
Beispiel #38
0
    def test_array_lhs(self):
        prob = Problem(root=Group())
        C1 = prob.root.add(
            'C1',
            ExecComp(['y[0]=x[1]', 'y[1]=x[0]'],
                     x=np.array([1., 2., 3.]),
                     y=np.array([0., 0.])))
        self.assertTrue('x' in C1._params_dict)
        self.assertTrue('y' in C1._unknowns_dict)

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, C1.unknowns['y'], np.array([2., 1.]), 0.00001)
Beispiel #39
0
    def test_fan_out_grouped(self):

        prob = Problem(impl=impl)
        prob.root = root = Group()

        root.add('p', IndepVarComp('x', 1.0))
        root.add('comp1', ExecComp(['y=3.0*x']))

        sub = root.add('sub', ParallelGroup())
        sub.add('comp2', ExecComp(['y=-2.0*x']))
        sub.add('comp3', ExecComp(['y=5.0*x']))

        root.add('c2', ExecComp(['y=-x']))
        root.add('c3', ExecComp(['y=3.0*x']))
        root.connect('sub.comp2.y', 'c2.x')
        root.connect('sub.comp3.y', 'c3.x')

        root.connect("comp1.y", "sub.comp2.x")
        root.connect("comp1.y", "sub.comp3.x")
        root.connect("p.x", "comp1.x")

        prob.root.ln_solver = LinearGaussSeidel()
        prob.root.sub.ln_solver = LinearGaussSeidel()

        prob.setup(check=False)
        prob.run()

        param = 'p.x'
        unknown_list = ['sub.comp2.y', "sub.comp3.y"]

        J = prob.calc_gradient([param], unknown_list, mode='fwd', return_format='dict')

        assert_rel_error(self, J[unknown_list[0]][param][0][0], -6.0, 1e-6)
        assert_rel_error(self, J[unknown_list[1]][param][0][0], 15.0, 1e-6)

        J = prob.calc_gradient([param], unknown_list, mode='rev', return_format='dict')
        assert_rel_error(self, J[unknown_list[0]][param][0][0], -6.0, 1e-6)
        assert_rel_error(self, J[unknown_list[1]][param][0][0], 15.0, 1e-6)

        unknown_list = ['c2.y', "c3.y"]

        J = prob.calc_gradient([param], unknown_list, mode='fwd', return_format='dict')

        assert_rel_error(self, J[unknown_list[0]][param][0][0], 6.0, 1e-6)
        assert_rel_error(self, J[unknown_list[1]][param][0][0], 45.0, 1e-6)

        J = prob.calc_gradient([param], unknown_list, mode='rev', return_format='dict')
        assert_rel_error(self, J[unknown_list[0]][param][0][0], 6.0, 1e-6)
        assert_rel_error(self, J[unknown_list[1]][param][0][0], 45.0, 1e-6)
Beispiel #40
0
    def test_complex_step(self):
        prob = Problem(root=Group())
        C1 = prob.root.add('C1', ExecComp(['y=2.0*x+1.'], x=2.0))

        self.assertTrue('x' in C1._params_dict)
        self.assertTrue('y' in C1._unknowns_dict)

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, C1.unknowns['y'], 5.0, 0.00001)

        J = C1.jacobian(C1.params, C1.unknowns, C1.resids)

        assert_rel_error(self, J[('y', 'x')], 2.0, 0.00001)
Beispiel #41
0
    def test_complex_step(self):
        prob = Problem(root=Group())
        C1 = prob.root.add('C1', ExecComp(['y=2.0*x+1.'], x=2.0))

        self.assertTrue('x' in C1._params_dict)
        self.assertTrue('y' in C1._unknowns_dict)

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, C1.unknowns['y'], 5.0, 0.00001)

        J = C1.jacobian(C1.params, C1.unknowns, C1.resids)

        assert_rel_error(self, J[('y','x')], 2.0, 0.00001)
    def test_inputs_wrt_nfidelity(self):
        mm = MultiFiMetaModel(nfi=3)

        mm.add_param('x', 0.)
        mm.add_output('y', 0.)

        prob = Problem(Group())
        prob.root.add('mm', mm)
        prob.setup(check=False)

        self.assertEqual(prob['mm.train:x'], [])
        self.assertEqual(prob['mm.train:x_fi2'], [])
        self.assertEqual(prob['mm.train:x_fi3'], [])
        self.assertEqual(prob['mm.train:y'], [])
        self.assertEqual(prob['mm.train:y_fi2'], [])
        self.assertEqual(prob['mm.train:y_fi3'], [])
Beispiel #43
0
    def test_simple(self):
        group = Group()
        group.add('x_param', ParamComp('x', 1.0), promotes=['*'])
        group.add('mycomp', SimpleCompDerivMatVec(), promotes=['x', 'y'])

        prob = Problem(impl=impl)
        prob.root = group
        prob.root.ln_solver = PetscKSP()
        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['x'], ['y'], mode='fwd', return_format='dict')
        assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)

        J = prob.calc_gradient(['x'], ['y'], mode='rev', return_format='dict')
        assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)
Beispiel #44
0
    def test_array_to_scalar(self):
        root = Group()

        root.add('P1', ParamComp('x', np.array([2., 3.])))
        root.add('C1', SimpleComp())
        root.add('C2', ExecComp('y = x * 3.', y=0., x=0.))

        root.connect('P1.x', 'C1.x', src_indices=[0,])
        root.connect('P1.x', 'C2.x', src_indices=[1,])

        prob = Problem(root)
        prob.setup(check=False)
        prob.run()

        self.assertAlmostEqual(root.C1.params['x'], 2.)
        self.assertAlmostEqual(root.C2.params['x'], 3.)
Beispiel #45
0
    def test_simple_jac(self):
        group = Group()
        group.add('x_param', IndepVarComp('x', 1.0), promotes=['*'])
        group.add('mycomp', ExecComp(['y=2.0*x']), promotes=['x', 'y'])

        prob = Problem()
        prob.root = group
        prob.root.ln_solver = DirectSolver()
        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['x'], ['y'], mode='fwd', return_format='dict')
        assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)

        J = prob.calc_gradient(['x'], ['y'], mode='rev', return_format='dict')
        assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)
Beispiel #46
0
    def test_simple(self):
        group = Group()
        group.add('x_param', IndepVarComp('x', 1.0), promotes=['*'])
        group.add('mycomp', SimpleCompDerivMatVec(), promotes=['x', 'y'])

        prob = Problem(impl=impl)
        prob.root = group
        prob.root.ln_solver = PetscKSP()
        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['x'], ['y'], mode='fwd', return_format='dict')
        assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)

        J = prob.calc_gradient(['x'], ['y'], mode='rev', return_format='dict')
        assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)
Beispiel #47
0
    def test_complex_step2(self):
        prob = Problem(Group())
        comp = prob.root.add('comp', ExecComp('y=x*x + x*2.0'))
        prob.root.add('p1', ParamComp('x', 2.0))
        prob.root.connect('p1.x', 'comp.x')

        comp.fd_options['force_fd'] = False

        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['p1.x'], ['comp.y'], mode='fwd', return_format='dict')
        assert_rel_error(self, J['comp.y']['p1.x'], np.array([6.0]), 0.00001)

        J = prob.calc_gradient(['p1.x'], ['comp.y'], mode='rev', return_format='dict')
        assert_rel_error(self, J['comp.y']['p1.x'], np.array([6.0]), 0.00001)
Beispiel #48
0
    def test_simple_jac(self):
        group = Group()
        group.add('x_param', ParamComp('x', 1.0), promotes=['*'])
        group.add('mycomp', ExecComp(['y=2.0*x']), promotes=['x', 'y'])

        prob = Problem()
        prob.root = group
        prob.root.ln_solver = ExplicitSolver()
        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['x'], ['y'], mode='fwd', return_format='dict')
        assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)

        J = prob.calc_gradient(['x'], ['y'], mode='rev', return_format='dict')
        assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)
Beispiel #49
0
    def test_subarray_to_promoted_var(self):
        root = Group()

        P = root.add('P', IndepVarComp('x', np.array([1., 2., 3., 4., 5.])))
        G = root.add('G', Group())
        C = root.add('C', SimpleComp())

        A  = G.add('A', SimpleArrayComp())
        G2 = G.add('G2', Group())

        A2 = G2.add('A2', SimpleArrayComp())

        root.connect('P.x', 'G.A.x', src_indices=[0,1])
        root.connect('P.x', 'C.x', src_indices=[2,])
        root.connect('P.x', 'G.G2.A2.x', src_indices=[3, 4])

        prob = Problem(root)
        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, root.G.A.params['x'], np.array([1., 2.]), 0.0001)
        self.assertAlmostEqual(root.C.params['x'], 3.)
        assert_rel_error(self, root.G.G2.A2.params['x'], np.array([4., 5.]), 0.0001)

        # now try the same thing with promoted var
        root = Group()

        P = root.add('P', IndepVarComp('x', np.array([1., 2., 3., 4., 5.])))
        G = root.add('G', Group())
        C = root.add('C', SimpleComp())

        A  = G.add('A', SimpleArrayComp(), promotes=['x', 'y'])
        G2 = G.add('G2', Group())

        A2 = G2.add('A2', SimpleArrayComp(), promotes=['x', 'y'])

        root.connect('P.x', 'G.x', src_indices=[0,1])
        root.connect('P.x', 'C.x', src_indices=[2,])
        root.connect('P.x', 'G.G2.x', src_indices=[3, 4])

        prob = Problem(root)
        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, root.G.A.params['x'], np.array([1., 2.]), 0.0001)
        self.assertAlmostEqual(root.C.params['x'], 3.)
        assert_rel_error(self, root.G.G2.A2.params['x'], np.array([4., 5.]), 0.0001)
    def test_fd_options_form(self):

        prob = Problem()
        prob.root = Group()
        comp = prob.root.add('comp', Paraboloid())
        prob.root.add('p1', ParamComp('x', 15.0))
        prob.root.add('p2', ParamComp('y', 15.0))
        prob.root.connect('p1.x', 'comp.x')
        prob.root.connect('p2.y', 'comp.y')

        comp.fd_options['force_fd'] = True
        comp.fd_options['form'] = 'forward'

        param_list = ['p1.x']
        unknowns_list = ['comp.f_xy']
        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(param_list, unknowns_list, return_format='dict')
        assert_rel_error(self, J['comp.f_xy']['p1.x'][0][0], 39.0, 1e-6)

        # Make sure it gives good result with small stepsize
        comp.fd_options['form'] = 'backward'

        J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
        assert_rel_error(self, J['comp.f_xy']['p1.x'][0][0], 39.0, 1e-6)

        # Make sure it gives good result with small stepsize
        comp.fd_options['form'] = 'central'

        J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
        assert_rel_error(self, J['comp.f_xy']['p1.x'][0][0], 39.0, 1e-6)

        # Now, Make sure we really are going foward and backward
        comp.fd_options['form'] = 'forward'
        comp.fd_options['step_size'] = 1e3
        J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
        self.assertGreater(J['comp.f_xy']['p1.x'][0][0], 0.0)

        comp.fd_options['form'] = 'backward'
        J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
        self.assertLess(J['comp.f_xy']['p1.x'][0][0], 0.0)

        # Central should get pretty close even for the bad stepsize
        comp.fd_options['form'] = 'central'
        J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
        assert_rel_error(self, J['comp.f_xy']['p1.x'][0][0], 39.0, 1e-1)
    def test_fd_options_form(self):

        prob = Problem()
        prob.root = Group()
        comp = prob.root.add('comp', Paraboloid())
        prob.root.add('p1', ParamComp('x', 15.0))
        prob.root.add('p2', ParamComp('y', 15.0))
        prob.root.connect('p1.x', 'comp.x')
        prob.root.connect('p2.y', 'comp.y')

        comp.fd_options['force_fd'] = True
        comp.fd_options['form'] = 'forward'

        param_list = ['p1.x']
        unknowns_list = ['comp.f_xy']
        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(param_list, unknowns_list, return_format='dict')
        assert_rel_error(self, J['comp.f_xy']['p1.x'][0][0], 39.0, 1e-6)

        # Make sure it gives good result with small stepsize
        comp.fd_options['form'] = 'backward'

        J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
        assert_rel_error(self, J['comp.f_xy']['p1.x'][0][0], 39.0, 1e-6)

        # Make sure it gives good result with small stepsize
        comp.fd_options['form'] = 'central'

        J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
        assert_rel_error(self, J['comp.f_xy']['p1.x'][0][0], 39.0, 1e-6)

        # Now, Make sure we really are going foward and backward
        comp.fd_options['form'] = 'forward'
        comp.fd_options['step_size'] = 1e3
        J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
        self.assertGreater(J['comp.f_xy']['p1.x'][0][0], 0.0)

        comp.fd_options['form'] = 'backward'
        J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
        self.assertLess(J['comp.f_xy']['p1.x'][0][0], 0.0)

        # Central should get pretty close even for the bad stepsize
        comp.fd_options['form'] = 'central'
        J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
        assert_rel_error(self, J['comp.f_xy']['p1.x'][0][0], 39.0, 1e-1)
    def test_linear_system(self):
        root = Group()

        root.add('lin', LinearSystem(3))

        x = np.array([1, 2, -3])
        A = np.array([[5.0, -3.0, 2.0], [1.0, 7.0, -4.0], [1.0, 0.0, 8.0]])
        b = A.dot(x)

        root.add('p1', ParamComp('A', A))
        root.add('p2', ParamComp('b', b))
        root.connect('p1.A', 'lin.A')
        root.connect('p2.b', 'lin.b')

        prob = Problem(root)
        prob.setup(check=False)
        prob.run()

        # Make sure it gets the right answer
        assert_rel_error(self, prob['lin.x'], x, .0001)
        assert_rel_error(self, np.linalg.norm(prob.root.resids.vec), 0.0,
                         1e-10)

        # Compare against calculated derivs
        Ainv = np.linalg.inv(A)
        dx_dA = np.outer(Ainv, -x).reshape(3, 9)
        dx_db = Ainv

        J = prob.calc_gradient(['p1.A', 'p2.b'], ['lin.x'],
                               mode='fwd',
                               return_format='dict')
        assert_rel_error(self, J['lin.x']['p1.A'], dx_dA, .0001)
        assert_rel_error(self, J['lin.x']['p2.b'], dx_db, .0001)

        J = prob.calc_gradient(['p1.A', 'p2.b'], ['lin.x'],
                               mode='rev',
                               return_format='dict')
        assert_rel_error(self, J['lin.x']['p1.A'], dx_dA, .0001)
        assert_rel_error(self, J['lin.x']['p2.b'], dx_db, .0001)

        J = prob.calc_gradient(['p1.A', 'p2.b'], ['lin.x'],
                               mode='fd',
                               return_format='dict')
        assert_rel_error(self, J['lin.x']['p1.A'], dx_dA, .0001)
        assert_rel_error(self, J['lin.x']['p2.b'], dx_db, .0001)
Beispiel #53
0
    def test_subarray_to_promoted_var(self):
        root = Group()

        P = root.add('P', ParamComp('x', np.array([1., 2., 3.])))
        G = root.add('G', Group())
        C = root.add('C', SimpleComp())

        A = G.add('A', SimpleArrayComp())  # , promotes=['x', 'y'])

        root.connect('P.x', 'G.A.x', src_indices=[0, 1])
        root.connect('P.x', 'C.x', src_indices=[
            2,
        ])

        prob = Problem(root)
        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, root.G.A.params['x'], np.array([1., 2.]),
                         0.0001)
        self.assertAlmostEqual(root.C.params['x'], 3.)

        # no try the same thing with promoted var
        root = Group()

        P = root.add('P', ParamComp('x', np.array([1., 2., 3.])))
        G = root.add('G', Group())
        C = root.add('C', SimpleComp())

        A = G.add('A', SimpleArrayComp(), promotes=['x', 'y'])

        root.connect('P.x', 'G.x', src_indices=[0, 1])
        root.connect('P.x', 'C.x', src_indices=[
            2,
        ])

        prob = Problem(root)
        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, root.G.A.params['x'], np.array([1., 2.]),
                         0.0001)
        self.assertAlmostEqual(root.C.params['x'], 3.)
Beispiel #54
0
    def test_array2D(self):
        group = Group()
        group.add('x_param', ParamComp('x', np.ones((2, 2))), promotes=['*'])
        group.add('mycomp', ArrayComp2D(), promotes=['x', 'y'])

        prob = Problem()
        prob.root = group
        prob.root.ln_solver = ExplicitSolver()
        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['x'], ['y'], mode='fwd', return_format='dict')
        Jbase = prob.root.mycomp._jacobian_cache
        diff = np.linalg.norm(J['y']['x'] - Jbase['y', 'x'])
        assert_rel_error(self, diff, 0.0, 1e-8)

        J = prob.calc_gradient(['x'], ['y'], mode='rev', return_format='dict')
        diff = np.linalg.norm(J['y']['x'] - Jbase['y', 'x'])
        assert_rel_error(self, diff, 0.0, 1e-8)
Beispiel #55
0
    def test_complex_step2(self):
        prob = Problem(Group())
        comp = prob.root.add('comp', ExecComp('y=x*x + x*2.0'))
        prob.root.add('p1', ParamComp('x', 2.0))
        prob.root.connect('p1.x', 'comp.x')

        comp.fd_options['force_fd'] = False

        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['p1.x'], ['comp.y'],
                               mode='fwd',
                               return_format='dict')
        assert_rel_error(self, J['comp.y']['p1.x'], np.array([6.0]), 0.00001)

        J = prob.calc_gradient(['p1.x'], ['comp.y'],
                               mode='rev',
                               return_format='dict')
        assert_rel_error(self, J['comp.y']['p1.x'], np.array([6.0]), 0.00001)
Beispiel #56
0
    def test_array_to_scalar(self):
        root = Group()

        root.add('P1', ParamComp('x', np.array([2., 3.])))
        root.add('C1', SimpleComp())
        root.add('C2', ExecComp('y = x * 3.', y=0., x=0.))

        root.connect('P1.x', 'C1.x', src_indices=[
            0,
        ])
        root.connect('P1.x', 'C2.x', src_indices=[
            1,
        ])

        prob = Problem(root)
        prob.setup(check=False)
        prob.run()

        self.assertAlmostEqual(root.C1.params['x'], 2.)
        self.assertAlmostEqual(root.C2.params['x'], 3.)
    def test_overrides(self):
        class OverrideComp(Component):
            def __init__(self):
                super(OverrideComp, self).__init__()

                # Params
                self.add_param('x', 3.0)

                # Unknowns
                self.add_output('y', 5.5)

            def solve_nonlinear(self, params, unknowns, resids):
                """ Doesn't do much. """
                unknowns['y'] = 7.0 * params['x']

            def apply_linear(self, params, unknowns, dparams, dunknowns,
                             dresids, mode):
                """Never Call."""
                raise RuntimeError(
                    "This should have been overridden by force_fd.")

            def jacobian(self, params, unknowns, resids):
                """Never Call."""
                raise RuntimeError(
                    "This should have been overridden by force_fd.")

        prob = Problem()
        prob.root = Group()
        comp = prob.root.add('comp', OverrideComp())
        prob.root.add('p1', ParamComp('x', 2.0))
        prob.root.connect('p1.x', 'comp.x')

        comp.fd_options['force_fd'] = True

        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['p1.x'], ['comp.y'],
                               mode='fwd',
                               return_format='dict')
        assert_rel_error(self, J['comp.y']['p1.x'][0][0], 7.0, 1e-6)
    def test_prom_conns(self):
        # this test mimics some of the connections found in test_nozzle in pycycle. The bug was that
        # an unknown that was connected to one parameter
        # (desVars.Ps_exhaust to nozzle.press_calcs.Ps_exhaust), was not being connected to the
        # other parameters ('nozzle.ideal_flow.chem_eq.n2ls.P', 'nozzle.ideal_flow.mach_calc.Ps',
        # and 'nozzle.ideal_flow.props.tp2props.P') that were connected via input-input connections
        # to nozzle.press_calcs.Ps_exhaust.

        prob = Problem(root=Group())
        root = prob.root
        desVars = root.add("desVars",
                           ParamComp('Ps_exhaust', 1.0),
                           promotes=('Ps_exhaust', ))
        nozzle = root.add("nozzle", Group())
        press_calcs = nozzle.add('press_calcs',
                                 ExecComp('out=Ps_exhaust'),
                                 promotes=('Ps_exhaust', ))
        ideal_flow = nozzle.add("ideal_flow", Group())
        chem_eq = ideal_flow.add('chem_eq', Group(), promotes=('P', ))
        n2ls = chem_eq.add("n2ls", ExecComp('out=P'), promotes=('P', ))
        props = ideal_flow.add("props", Group(), promotes=('P', ))
        tp2props = props.add("tp2props", ExecComp('out=P'), promotes=('P', ))
        mach_calc = ideal_flow.add("mach_calc",
                                   ExecComp('out=Ps'),
                                   promotes=('Ps', ))

        nozzle.connect('Ps_exhaust', 'ideal_flow.Ps')
        root.connect('Ps_exhaust', 'nozzle.Ps_exhaust')
        ideal_flow.connect('Ps', 'P')

        prob.setup(check=False)

        expected_targets = set([
            'nozzle.ideal_flow.chem_eq.n2ls.P',
            'nozzle.press_calcs.Ps_exhaust', 'nozzle.ideal_flow.mach_calc.Ps',
            'nozzle.ideal_flow.props.tp2props.P'
        ])
        self.assertEqual(set(prob.root.connections), expected_targets)

        for tgt in expected_targets:
            self.assertTrue('desVars.Ps_exhaust' in prob.root.connections[tgt])
    def test_warm_start(self):
        # create metamodel with warm_restart = True
        meta = MetaModel()
        meta.add_param('x1', 0.)
        meta.add_param('x2', 0.)
        meta.add_output('y1', 0.)
        meta.add_output('y2', 0.)
        meta.default_surrogate = ResponseSurface()
        meta.warm_restart = True

        # add to problem
        prob = Problem(Group())
        prob.root.add('meta', meta)
        prob.setup(check=False)

        # provide initial training data
        prob['meta.train:x1'] = [1.0, 3.0]
        prob['meta.train:x2'] = [1.0, 4.0]
        prob['meta.train:y1'] = [3.0, 1.0]
        prob['meta.train:y2'] = [1.0, 7.0]

        # run against a data point and check result
        prob['meta.x1'] = 2.0
        prob['meta.x2'] = 3.0
        prob.run()

        assert_rel_error(self, prob['meta.y1'], 1.9085, .001)
        assert_rel_error(self, prob['meta.y2'], 3.9203, .001)

        # Add 3rd training point, moves the estimate for that point
        # back to where it should be.
        prob['meta.train:x1'] = [2.0]
        prob['meta.train:x2'] = [3.0]
        prob['meta.train:y1'] = [2.0]
        prob['meta.train:y2'] = [4.0]

        meta.train = True  # currently need to tell meta to re-train

        prob.run()
        assert_rel_error(self, prob['meta.y1'], 2.0, .00001)
        assert_rel_error(self, prob['meta.y2'], 4.0, .00001)
    def test_no_derivatives(self):

        prob = Problem()
        prob.root = Group()
        comp = prob.root.add('comp', ExecComp('y=x*2.0'))
        prob.root.add('p1', ParamComp('x', 2.0))
        prob.root.connect('p1.x', 'comp.x')

        comp.fd_options['force_fd'] = True

        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['p1.x'], ['comp.y'],
                               mode='fwd',
                               return_format='dict')
        assert_rel_error(self, J['comp.y']['p1.x'][0][0], 2.0, 1e-6)

        J = prob.calc_gradient(['p1.x'], ['comp.y'],
                               mode='rev',
                               return_format='dict')
        assert_rel_error(self, J['comp.y']['p1.x'][0][0], 2.0, 1e-6)