Beispiel #1
0
    def __init__(self, video_path, is_color, slider):
        super().__init__()

        self.is_color = is_color
        self.is_paused = False
        self.current_frame = 2  # cap2.oni запускается только со 2-го кадра

        self.slider: QSlider = slider

        self.dev = openni2.Device.open_file(video_path.encode('utf-8'))
        self.pbs = openni2.PlaybackSupport(self.dev)

        self.image_stream = openni2.VideoStream(
            self.dev, SENSOR_COLOR if is_color else SENSOR_DEPTH)

        self.image_stream.start()
Beispiel #2
0
def openDevice(video_path):
    try:
        if sys.platform == "win32":
            libpath = "lib/Windows"
        else:
            libpath = "lib/Linux"
        openni2.initialize(libpath)
        dev = openni2.Device.open_file(video_path)
        pbs = openni2.PlaybackSupport(dev)

        pbs.set_repeat_enabled(True)
        pbs.set_speed(-1.0)

        return dev, pbs
    except Exception as ex:
        print(ex)
        raise Exception("Initialization Error")
Beispiel #3
0
    def open_device(self):
        if self.is_open:
            self.stop_video()

        path = self.browse_folder()

        if path:
            self.device = self.device.open_file(path)
            self.depth_stream = self.device.create_depth_stream()
            self.color_stream = self.device.create_color_stream()
            self.num_depth_frames = self.depth_stream.get_number_of_frames()
            self.num_color_frames = self.color_stream.get_number_of_frames()
            self.playback_support = openni2.PlaybackSupport(self.device)
            self.horizontalSlider.setRange(2, self.num_depth_frames)

            self.is_open = True

            self.play_button.setEnabled(True)
            self.stop_button.setEnabled(True)
            self.next_button.setEnabled(True)
            self.prev_button.setEnabled(True)
def oni_converter(file_path):
    ''' Convert oni file to color and depth avi files.
        avi files will be saved in working directory
        as color.avi and depth.avi

        Parameters
        ----------
        file_path : str
            full path to oni file

    '''
    count = 0
    result = None

    PATH_TO_OPENNI2_SO_FILE = './OpenNI-Linux-x64-2.2/Redist'

    t1_start = process_time()
    openni2.initialize(PATH_TO_OPENNI2_SO_FILE)
    dev = openni2.Device.open_file(file_path.encode('utf-8'))
    c_stream, d_stream = dev.create_color_stream(), dev.create_depth_stream()
    openni2.PlaybackSupport(dev).set_speed(ctypes.c_float(0.0))
    d_stream.start()
    c_stream.start()

    c_images, d_images = [], []
    n_c_frames = openni2.PlaybackSupport(
        dev).get_number_of_frames(c_stream) - 1
    n_d_frames = openni2.PlaybackSupport(dev).get_number_of_frames(d_stream)
    if n_c_frames != n_d_frames:
        print('Разное количество кадров в color и depth потоках!\n'
              f'color - {n_c_frames},  depth - {n_d_frames}')
        sys.exit()

    for i in tqdm(range(n_c_frames)):

        # process depth stream
        d_frame = np.fromstring(d_stream.read_frame().get_buffer_as_uint16(),
                                dtype=np.uint16).reshape(480, 640)
        # Correct the range. Depth images are 12bits
        d_img = np.uint8(d_frame.astype(float) * 255 / 2**12 - 1)
        d_img = cv2.cvtColor(d_img, cv2.COLOR_GRAY2RGB)
        d_img = 255 - d_img
        d_images.append(d_img)
        if i == 0:
            continue
        # process color stream
        c_frame = c_stream.read_frame()
        c_frame_data = c_frame.get_buffer_as_uint8()
        c_img_bgr = np.frombuffer(c_frame_data, dtype=np.uint8)
        c_img_bgr.shape = (480, 640, 3)
        c_img_rgb = cv2.cvtColor(c_img_bgr, cv2.COLOR_BGR2RGB)
        c_images.append(c_img_rgb)
        count += 1
        # yield count
    openni2.unload()

    c_out = cv2.VideoWriter(
        'color.avi', cv2.VideoWriter_fourcc(*'DIVX'), 30, (640, 480))  # надо добавить fps как переменную
    d_out = cv2.VideoWriter(
        'depth.avi', cv2.VideoWriter_fourcc(*'DIVX'), 30, (640, 480))  # надо добавить fps как переменную

    for i in tqdm(range(len(c_images))):
        c_out.write(c_images[i])
        d_out.write(d_images[i])
        count += 1
        # yield count
    c_out.release()
    d_out.release()

    t1_stop = process_time()
    print(f"Process duration, seconds:, {round(t1_stop-t1_start, 3)}")
    return "ONI file has been processed successfully."
Beispiel #5
0
def play(name):
    filename = os.path.join('data', name)
    recorder_exposure = open(filename + '_exposure.txt', 'r')
    frame_exposure = open(filename + '_frame_exp.txt', 'w')
    dev = openni2.Device.open_file((filename + '.oni').encode('utf-8'))
    pc = openni2.PlaybackSupport(dev)
    pc.set_speed(-1.0)
    pc.set_repeat_enabled(False)
    print(dev.get_device_info())
    depth_stream = dev.create_depth_stream()
    depth_mode = depth_stream.get_video_mode()
    depth_stream.start()
    print(depth_mode)
    color_stream = dev.create_color_stream()
    color_mode = color_stream.get_video_mode()
    color_stream.start()
    print(color_mode)
    print('Replay Start')
    is_end = False
    g = np.loadtxt(filename + '_curve.txt')
    img_cnt = 0
    exposure = 64
    exposure_next = int(recorder_exposure.readline())
    last_median = [0, 0]
    for t in range(pc.get_number_of_frames(color_stream)):
        _, _, is_end, _, image_color = show_image(depth_stream, color_stream)
        if is_end:
            break
        curr_median = [
            np.percentile(image_color, 25) + 5,
            np.percentile(image_color, 75) + 5
        ]
        if img_cnt > 1 and \
            ((exposure_next > exposure or exposure == 0) and
                (curr_median[1] / last_median[1] > 1.2 or
                 curr_median[0] / last_median[0] > 1.2)) or \
            ((exposure_next < exposure or exposure == 0) and
                (last_median[1] / curr_median[1] > 1.2 or
                 last_median[0] / curr_median[0] > 1.2)):
            img_cnt = 0
            exposure = exposure_next
            exposure_next = recorder_exposure.readline()
            if exposure_next == '':
                is_end = True
            else:
                exposure_next = int(exposure_next)
            print(exposure)
        frame_exposure.write(str(exposure) + '\n')
        frame_exposure.flush()
        last_median[0] = curr_median[0]
        last_median[1] = curr_median[1]
        print('\t', img_cnt)
        img_cnt += 1
        if exposure > 0:
            image_color = np.exp(g[image_color]) / exposure * 10
            cv2.imshow('linear', image_color)
        cv2.waitKey(1)
    recorder_exposure.close()
    frame_exposure.close()
    depth_stream.stop()
    color_stream.stop()