Beispiel #1
0
def get_disp(GRS):

    ops.timeSeries('Linear', 1)
    ops.pattern('Plain', 1, 1)
    for i in range(GRS.nbnBns):
        if GRS.LoadType == 0 \
                or (GRS.GeomType in {0, 1, 2} and GRS.LoadType == 1 and GRS.nsAll.x[GRS.nbn[i]] <= 0) \
                or (GRS.GeomType in {0, 1, 2} and GRS.LoadType == 2 and GRS.nsAll.y[GRS.nbn[i]] <= 0) \
                or (GRS.GeomType in {4} and GRS.LoadType == 1 and GRS.nsAll.x[GRS.nbn[i]] <= GRS.span / 2) \
                or (GRS.GeomType in {4} and GRS.LoadType == 2 and GRS.nsAll.y[GRS.nbn[i]] <= GRS.span / 2):
            ops.load(int(100 + GRS.nbn[i]), 0., 0., -1., 0., 0., 0.)

    ops.algorithm("Linear")
    ops.integrator("LoadControl", 1)
    ops.analysis('Static')

    ops.analyze(1)

    NDisp = np.zeros([GRS.nbNsAll, 3])
    for j in range(GRS.nbNsAll):
        NDisp[j, 0] = ops.nodeDisp(int(j + 100), 1)
        NDisp[j, 1] = ops.nodeDisp(int(j + 100), 2)
        NDisp[j, 2] = ops.nodeDisp(int(j + 100), 3)

    return NDisp
Beispiel #2
0
def RunIterations2(GRS, Fz, printOn):

    ops.timeSeries('Linear', 1)
    ops.pattern('Plain', 1, 1)
    for i in range(GRS.nbnBns):
        ops.load(int(100 + GRS.nbn[i]), 0., 0., Fz * un.kN, 0., 0., 0.)
    GRS.GetTopNode()
    # ops.load(int(100+GRS.maxNsID), 0., 0., Fz * kN, 0., 0., 0.)  # mid-point

    # create SOE
    ops.system('UmfPack')
    # create DOF number
    ops.numberer('RCM')
    # create constraint handler
    ops.constraints('Transformation')
    # create integrator
    ops.integrator("LoadControl", 1.0 / GRS.Steps)
    # create algorithm
    ops.algorithm("Newton")
    # create test
    ops.test('EnergyIncr', 1.e-10, 100)

    ops.analysis('Static')

    NDisp = np.zeros([GRS.Steps + 1, GRS.nbNsAll, 3])
    # EDisp = np.zeros([GRS.Steps + 1, GRS.nbElAll, 6])
    EForce = np.zeros([GRS.Steps + 1, GRS.nbElAll, 12])
    reI = 0

    reI = 0
    lefutott = 1
    for i in range(1, GRS.Steps + 1):
        hiba = ops.analyze(1)
        if hiba == 0:
            if i == 1:
                if printOn: print('analysis step 1 completed successfully')
            for j in range(GRS.nbNsAll):
                NDisp[i, j, 0] = -ops.nodeDisp(int(j + 100),
                                               1) / un.mm  # mm displacement
                NDisp[i, j, 1] = -ops.nodeDisp(int(j + 100),
                                               2) / un.mm  # mm displacement
                NDisp[i, j, 2] = -ops.nodeDisp(int(j + 100),
                                               3) / un.mm  # mm displacement
            for j in range(GRS.nbElAll):
                EForce[i, j] = ops.eleResponse(int(j + 1000), 'localForce')
                # EDisp[i, j] = ops.eleResponse(int(j + 1000), 'basicDeformation')
        else:
            lefutott = 0
            reI = i
            if reI == 1:
                if printOn: print('analysis failed to converge in step ', i)
            break

    return lefutott, NDisp, EForce, reI
Beispiel #3
0
def test_recorder_time_step_can_handle_fp_precision():
    import tempfile
    opy.model('basic', '-ndm', 2, '-ndf', 3)
    opy.node(1, 0.0, 0.0)
    opy.node(2, 0.0, 5.0)
    opy.fix(2, 0, 1, 0)
    opy.fix(1, 1, 1, 1)
    opy.equalDOF(2, 1, 2)
    opy.mass(2, 1.0, 0.0, 0.0)
    opy.geomTransf('Linear', 1, '-jntOffset')
    opy.element('elasticBeamColumn', 1, 1, 2, 1.0, 1e+06, 0.00164493, 1)
    opy.timeSeries('Path', 1, '-dt', 0.1, '-values', 0.0, -0.001, 0.001,
                   -0.015, 0.033, 0.105, 0.18)
    opy.pattern('UniformExcitation', 1, 1, '-accel', 1)
    opy.rayleigh(0.0, 0.0159155, 0.0, 0.0)
    opy.wipeAnalysis()
    opy.algorithm('Newton')
    opy.system('SparseSYM')
    opy.numberer('RCM')
    opy.constraints('Transformation')
    opy.integrator('Newmark', 0.5, 0.25)
    opy.analysis('Transient')
    opy.test('EnergyIncr', 1e-07, 10, 0, 2)
    node_rec_ffp = tempfile.NamedTemporaryFile(delete=False).name
    ele_rec_ffp = tempfile.NamedTemporaryFile(delete=False).name
    rdt = 0.01
    adt = 0.001
    opy.recorder('Node', '-file', node_rec_ffp, '-precision', 16, '-dT', rdt,
                 '-rTolDt', 0.00001, '-time', '-node', 1, '-dof', 1, 'accel')
    opy.recorder('Element', '-file', ele_rec_ffp, '-precision', 16, '-dT', rdt,
                 '-rTolDt', 0.00001, '-time', '-ele', 1, 'force')

    opy.record()
    for i in range(1100):
        opy.analyze(1, adt)
        opy.getTime()
    opy.wipe()

    a = open(node_rec_ffp).read().splitlines()
    for i in range(len(a) - 1):
        dt = float(a[i + 1].split()[0]) - float(a[i].split()[0])
        assert abs(dt - 0.01) < adt * 0.1, (i, dt)
    a = open(ele_rec_ffp).read().splitlines()
    for i in range(len(a) - 1):
        dt = float(a[i + 1].split()[0]) - float(a[i].split()[0])
        assert abs(dt - 0.01) < adt * 0.1, (i, dt)
Beispiel #4
0
def get_normal_force(GRS):

    ops.timeSeries('Linear', 1)
    ops.pattern('Plain', 1, 1)
    for i in range(GRS.nbnBns):
        if GRS.LoadType == 0 \
                or (GRS.GeomType in {0, 1, 2} and GRS.LoadType == 1 and GRS.nsAll.x[GRS.nbn[i]] <= 0) \
                or (GRS.GeomType in {0, 1, 2} and GRS.LoadType == 2 and GRS.nsAll.y[GRS.nbn[i]] <= 0) \
                or (GRS.GeomType in {4} and GRS.LoadType == 1 and GRS.nsAll.x[GRS.nbn[i]] <= GRS.span / 2) \
                or (GRS.GeomType in {4} and GRS.LoadType == 2 and GRS.nsAll.y[GRS.nbn[i]] <= GRS.span / 2):
            ops.load(int(100 + GRS.nbn[i]), 0., 0., -1., 0., 0., 0.)

    ops.algorithm("Linear")
    ops.integrator("LoadControl", 1)
    ops.analysis('Static')

    ops.analyze(1)

    EForce = np.zeros([GRS.nbElAll])
    for j in range(GRS.nbElAll):
        EForce[j] = ops.eleResponse(int(j + 1000), 'localForce')[0]
    return EForce
loadValues = [0, P, 0.0]
op.load(3, *loadValues)

# ------------------------------
# Start of analysis generation
# ------------------------------
# create SOE
op.system('UmfPack')
# create DOF number
op.numberer('RCM')
# create constraint handler
op.constraints('Transformation')
# create integrator
op.integrator('LoadControl', timeStep, NumSteps)
# create algorithm
op.algorithm('Newton')
# create test
op.test('NormUnbalance', 1, 1000, 1)
# create analysis object
op.analysis('Static')
# perform the analysis
op.analyze(NumSteps)
op.loadConst('-time', 1.00)
op.wipeAnalysis()

#----------------------------------------------------------------------------------
###################################################################################
# Stage 2 : Perform Dynamic analysis with excess pore pressure generation in soil
###################################################################################

Total_Time = 30
Beispiel #6
0
# ------------------------------
# Start of analysis generation
# ------------------------------

# create the system of equation, a SPD using a band storage scheme
ops.system("BandSPD")

# create the DOF numberer, the reverse Cuthill-McKee algorithm
ops.numberer("RCM")

# create the constraint handler, a Plain handler is used as h**o constraints
ops.constraints("Plain")

# create the solution algorithm, a Linear algorithm is created
ops.algorithm("Linear")

# create the integration scheme, the LoadControl scheme using steps of 1.0
ops.integrator("LoadControl", 1.0)

# create the analysis object 
ops.analysis("Static")

# ------------------------------
# End of analysis generation
# ------------------------------


# ------------------------------
# Start of recorder generation
# ------------------------------
Beispiel #7
0
#---ANALYSIS PARAMETERS
# Newmark parameters
gamma = 0.5
beta = 0.25

#-----------------------------------------------------------------------------------------
#  9. GRAVITY ANALYSIS
#-----------------------------------------------------------------------------------------
# update materials to ensure elastic behavior
op.updateMaterialStage('-material', 1, '-stage', 0)
op.updateMaterialStage('-material', 2, '-stage', 0)
op.updateMaterialStage('-material', 3, '-stage', 0)

op.constraints('Penalty', 1.0E14, 1.0E14)
op.test('NormDispIncr', 1e-4, 35, 1)
op.algorithm('KrylovNewton')
op.numberer('RCM')
op.system('ProfileSPD')
op.integrator('Newmark', gamma, beta)
op.analysis('Transient')

startT = tt.time()
op.analyze(10, 5.0E2)
print('Finished with elastic gravity analysis...')

# update material to consider elastoplastic behavior
op.updateMaterialStage('-material', 1, '-stage', 1)
op.updateMaterialStage('-material', 2, '-stage', 1)
op.updateMaterialStage('-material', 3, '-stage', 1)

# plastic gravity loading
Beispiel #8
0
# create the system of equation
ops.system("BandGeneral")

# create the DOF numberer, the reverse Cuthill-McKee algorithm
ops.numberer("RCM")

# create the constraint handler, a Plain handler is used as h**o constraints
ops.constraints("Plain")

# Create the convergence test, the norm of the residual with a tolerance of 
# 1e-12 and a max number of iterations of 10
ops.test("NormDispIncr", 1.0E-8, 10, 0)

# create the solution algorithm, a Newton-Raphson algorithm
ops.algorithm("Newton")

# create the integration scheme, the LoadControl scheme using steps of 0.1
ops.integrator("LoadControl", 0.1)

# create the analysis object 
ops.analysis("Static")

# ------------------------------------------------
# End of analysis generation for gravity analysis
# ------------------------------------------------


# ------------------------------
# Perform gravity load analysis
# ------------------------------
def get_inelastic_response(mass,
                           k_spring,
                           f_yield,
                           motion,
                           dt,
                           xi=0.05,
                           r_post=0.0):
    """
    Run seismic analysis of a nonlinear SDOF

    :param mass: SDOF mass
    :param k_spring: spring stiffness
    :param f_yield: yield strength
    :param motion: list, acceleration values
    :param dt: float, time step of acceleration values
    :param xi: damping ratio
    :param r_post: post-yield stiffness
    :return:
    """

    op.wipe()
    op.model('basic', '-ndm', 2, '-ndf', 3)  # 2 dimensions, 3 dof per node

    # Establish nodes
    bot_node = 1
    top_node = 2
    op.node(bot_node, 0., 0.)
    op.node(top_node, 0., 0.)

    # Fix bottom node
    op.fix(top_node, opc.FREE, opc.FIXED, opc.FIXED)
    op.fix(bot_node, opc.FIXED, opc.FIXED, opc.FIXED)
    # Set out-of-plane DOFs to be slaved
    op.equalDOF(1, 2, *[2, 3])

    # nodal mass (weight / g):
    op.mass(top_node, mass, 0., 0.)

    # Define material
    bilinear_mat_tag = 1
    mat_type = "Steel01"
    mat_props = [f_yield, k_spring, r_post]
    op.uniaxialMaterial(mat_type, bilinear_mat_tag, *mat_props)

    # Assign zero length element
    beam_tag = 1
    op.element('zeroLength', beam_tag, bot_node, top_node, "-mat",
               bilinear_mat_tag, "-dir", 1, '-doRayleigh', 1)

    # Define the dynamic analysis
    load_tag_dynamic = 1
    pattern_tag_dynamic = 1

    values = list(-1 * motion)  # should be negative
    op.timeSeries('Path', load_tag_dynamic, '-dt', dt, '-values', *values)
    op.pattern('UniformExcitation', pattern_tag_dynamic, opc.X, '-accel',
               load_tag_dynamic)

    # set damping based on first eigen mode
    angular_freq = op.eigen('-fullGenLapack', 1)**0.5
    alpha_m = 0.0
    beta_k = 2 * xi / angular_freq
    beta_k_comm = 0.0
    beta_k_init = 0.0

    op.rayleigh(alpha_m, beta_k, beta_k_init, beta_k_comm)

    # Run the dynamic analysis

    op.wipeAnalysis()

    op.algorithm('Newton')
    op.system('SparseGeneral')
    op.numberer('RCM')
    op.constraints('Transformation')
    op.integrator('Newmark', 0.5, 0.25)
    op.analysis('Transient')

    tol = 1.0e-10
    iterations = 10
    op.test('EnergyIncr', tol, iterations, 0, 2)
    analysis_time = (len(values) - 1) * dt
    analysis_dt = 0.001
    outputs = {
        "time": [],
        "rel_disp": [],
        "rel_accel": [],
        "rel_vel": [],
        "force": []
    }

    while op.getTime() < analysis_time:
        curr_time = op.getTime()
        op.analyze(1, analysis_dt)
        outputs["time"].append(curr_time)
        outputs["rel_disp"].append(op.nodeDisp(top_node, 1))
        outputs["rel_vel"].append(op.nodeVel(top_node, 1))
        outputs["rel_accel"].append(op.nodeAccel(top_node, 1))
        op.reactions()
        outputs["force"].append(
            -op.nodeReaction(bot_node, 1))  # Negative since diff node
    op.wipe()
    for item in outputs:
        outputs[item] = np.array(outputs[item])

    return outputs
Beispiel #10
0
ops.node(2, 72.0)

ops.fix(1, 1)

ops.element('Truss', 1, 1, 2, 10.0, 1)
ops.timeSeries('Linear', 1)
ops.pattern('Plain', 1, 1)
ops.load(2, 100.0)

ops.constraints('Transformation')
ops.numberer('ParallelPlain')
ops.test('NormDispIncr', 1e-6, 6, 2)
ops.system('ProfileSPD')
ops.integrator('Newmark', 0.5, 0.25)
# ops.analysis('Transient')
ops.algorithm('Linear')
ops.analysis('VariableTransient')

ops.analyze(5, 0.0001, 0.00001, 0.001, 10)
time = ops.getTime()
print(f'time: ', ops.getTime())
approx_vtime = 0.0001 + 0.001  # One step at target, then one step at maximum
assert 0.99 < time / approx_vtime < 1.01, (time, approx_vtime)
ops.setTime(0.0)
# Can still run a non-variable analysis - since analyze function has multiple dispatch.
ops.analyze(5, 0.0001)
time = ops.getTime()
print(f'time: ', ops.getTime())
approx_vtime = 0.0001 * 5  # variable transient is not active so time should be dt * 5
# If variable transient is not active then time would be 0.0005
assert 0.99 < time / approx_vtime < 1.01, (time, approx_vtime)
Beispiel #11
0
import sys
TEST_DIR = os.path.dirname(os.path.abspath(__file__)) + "/"
INTERPRETER_PATH = TEST_DIR + "../SRC/interpreter/"
sys.path.append(INTERPRETER_PATH)

import opensees as opy
opy.wipe()
opy.model('basic', '-ndm', 2, '-ndf', 2)
opy.node(1, 0.0, 0.0)
opy.node(2, 1.0, 0.0)
opy.node(3, 1.0, 1.0)
opy.node(4, 0.0, 1.0)
for i in range(4):
    opy.fix(1 + 1 * i, 1, 1)
opy.nDMaterial('stressDensity', 1, 1.8, 0.7, 250.0, 0.6, 0.2, 0.592, 0.021, 291.0, 55.0, 98.0, 13.0, 4.0, 0.22, 0.0, 0.0055, 0.607, 98.1)
opy.nDMaterial('InitStressNDMaterial', 2, 1, -100.0, 2)
opy.element('SSPquad', 1, 1, 2, 3, 4, 2, 'PlaneStrain', 1.0, 0.0, 0.0)
opy.constraints('Penalty', 1e+15, 1e+15)
opy.algorithm('Linear', False, False, False)
opy.numberer('RCM')
opy.system('FullGeneral')
opy.integrator('LoadControl', 0.1, 1)
opy.analysis('Static')
opy.timeSeries('Path', 1, '-values', 0, 0, 0, 0.1, '-time', 0.0, 1.0, 2.0, 1002.0, '-factor', 1.0)
opy.pattern('Plain', 1, 1)
opy.sp(3, 1, 1)
opy.sp(4, 1, 1)
opy.analyze(1)
opy.setParameter('-val', 1, '-ele', 1, 'materialState')
opy.analyze(1)
Beispiel #12
0
def RunIterations(GRS, Fz, printOn):
    ops.timeSeries('Linear', 1)
    ops.pattern('Plain', 1, 1)
    loadA = np.linspace(0, -Fz, GRS.Steps + 1)  # kN
    for i in range(GRS.nbnBns):
        if GRS.LoadType == 0 \
                or (GRS.GeomType in {0, 1, 2} and GRS.LoadType == 1 and GRS.nsAll.x[GRS.nbn[i]] <= 0) \
                or (GRS.GeomType in {0, 1, 2} and GRS.LoadType == 2 and GRS.nsAll.y[GRS.nbn[i]] <= 0) \
                or (GRS.GeomType in {4} and GRS.LoadType == 1 and GRS.nsAll.x[GRS.nbn[i]] <= GRS.span / 2) \
                or (GRS.GeomType in {4} and GRS.LoadType == 2 and GRS.nsAll.y[GRS.nbn[i]] <= GRS.span / 2):
            ops.load(int(100 + GRS.nbn[i]), 0., 0., Fz * un.kN, 0., 0., 0.)
    GRS.GetTopNode()
    # ops.load(int(100+GRS.maxNsID), 0., 0., Fz * kN, 0., 0., 0.)  # mid-point

    # create SOE
    ops.system('UmfPack')
    # create DOF number
    ops.numberer('RCM')
    # create constraint handler
    ops.constraints('Transformation')
    # create test
    ops.test('EnergyIncr', 1.e-12, 10)
    # create algorithm
    ops.algorithm("Newton")

    NDisp = np.zeros([GRS.Steps + 1, GRS.nbNsAll, 3])
    # EDisp = np.zeros([GRS.Steps + 1, GRS.nbElAll, 6])
    EForce = np.zeros([GRS.Steps + 1, GRS.nbElAll, 12])
    reI=0

    reI = 0
    lefutott = 1
    i=0
    load = 0
    stepSize = 1.0 / GRS.Steps
    ops.integrator("LoadControl", stepSize)
    ops.analysis('Static')
    while ((-stepSize*Fz > GRS.MinStepSize) and (i<GRS.Steps)):
        hiba = ops.analyze(1)
        if hiba == 0:
            load += -stepSize * Fz
            i += 1
            loadA[i] = load
            if i == 1:
                if printOn: print('analysis step 1 completed successfully')
            for j in range(GRS.nbNsAll):
                NDisp[i, j, 0] = - ops.nodeDisp(int(j + 100), 1) / un.mm  # mm displacement
                NDisp[i, j, 1] = - ops.nodeDisp(int(j + 100), 2) / un.mm  # mm displacement
                NDisp[i, j, 2] = - ops.nodeDisp(int(j + 100), 3) / un.mm  # mm displacement
            for j in range(GRS.nbElAll):
                EForce[i, j] = ops.eleResponse(int(j+1000), 'localForce')
                # EDisp[i, j] = ops.eleResponse(int(j + 1000), 'basicDeformation')
        else:
            stepSize = stepSize/2
            if printOn: print('analysis failed to converge in step ', i)
            ops.integrator("LoadControl", stepSize)
            lefutott = 0
            reI = i

    if i == GRS.Steps:
        if reI == 1:
            if printOn: print('analysis failed to converge')

    return lefutott, NDisp, EForce, loadA, reI
Beispiel #13
0
ops.load(4, 100, -50)

# print model
#ops.Print()

# create SOE
ops.system("BandSPD")

# create DOF number
ops.numberer("RCM")

# create constraint handler
ops.constraints("Plain")

# create algorithm
ops.algorithm("Linear")

# create integrator
ops.integrator("LoadControl", 1.0)

# create analysis object
ops.analysis("Static")

# perform the analysis
ops.analyze(1)

# print results
print "node 4 displacement: ", ops.nodeDisp(4)
ops.Print('node', 4)
ops.Print('ele')
Beispiel #14
0
def test_recorder_time_step_is_stable():
    opy.model('basic', '-ndm', 2, '-ndf', 2)
    opy.loadConst('-time', 1e+13)
    opy.node(1, 0.0, 0.0)
    opy.node(2, 0.5, 0.0)
    opy.node(3, 0.0, -0.5)
    opy.node(4, 0.5, -0.5)
    opy.equalDOF(3, 4, 1, 2)
    opy.node(5, 0.0, -1.0)
    opy.node(6, 0.5, -1.0)
    opy.equalDOF(5, 6, 1, 2)
    opy.node(7, 0.0, -1.5)
    opy.node(8, 0.5, -1.5)
    opy.equalDOF(7, 8, 1, 2)
    opy.node(9, 0.0, -2.0)
    opy.node(10, 0.5, -2.0)
    opy.equalDOF(9, 10, 1, 2)
    opy.node(11, 0.0, -2.5)
    opy.node(12, 0.5, -2.5)
    opy.equalDOF(11, 12, 1, 2)
    opy.node(13, 0.0, -3.0)
    opy.node(14, 0.5, -3.0)
    opy.equalDOF(13, 14, 1, 2)
    opy.fix(13, 0, 1)
    opy.fix(14, 0, 1)
    opy.node(15, 0.0, -3.0)
    opy.node(16, 0.0, -3.0)
    opy.fix(15, 1, 1)
    opy.fix(16, 0, 1)
    opy.equalDOF(13, 14, 1)
    opy.equalDOF(13, 16, 1)
    opy.nDMaterial('ElasticIsotropic', 1, 212500.0, 0.0, 1.7)
    opy.element('SSPquad', 1, 3, 4, 2, 1, 1, 'PlaneStrain', 1.0, 0.0, 16.677)
    opy.element('SSPquad', 2, 5, 6, 4, 3, 1, 'PlaneStrain', 1.0, 0.0, 16.677)
    opy.element('SSPquad', 3, 7, 8, 6, 5, 1, 'PlaneStrain', 1.0, 0.0, 16.677)
    opy.element('SSPquad', 4, 9, 10, 8, 7, 1, 'PlaneStrain', 1.0, 0.0, 16.677)
    opy.element('SSPquad', 5, 11, 12, 10, 9, 1, 'PlaneStrain', 1.0, 0.0,
                16.677)
    opy.element('SSPquad', 6, 13, 14, 12, 11, 1, 'PlaneStrain', 1.0, 0.0,
                16.677)
    opy.uniaxialMaterial('Viscous', 2, 212.5, 1.0)
    opy.element('zeroLength', 7, 15, 16, '-mat', 2, '-dir', 1)
    opy.constraints('Transformation')
    opy.test('NormDispIncr', 0.0001, 30, 0, 2)
    opy.algorithm('Newton', False, False, False)
    opy.numberer('RCM')
    opy.system('ProfileSPD')
    opy.integrator('Newmark', 0.5, 0.25)
    opy.analysis('Transient')
    opy.analyze(40, 1.0)
    opy.analyze(50, 0.5)
    opy.setTime(1.0e3)
    opy.wipeAnalysis()
    opy.recorder('Node', '-file', 'time_0_01.txt', '-precision', 16, '-dT',
                 0.01, '-rTolDt', 0.00001, '-time', '-node', 1, '-dof', 1,
                 'accel')
    opy.recorder('Element', '-file', 'etime_0_01.txt', '-precision', 16, '-dT',
                 0.01, '-rTolDt', 0.00001, '-time', '-ele', 1, 2, 'stress')
    opy.recorder('EnvelopeNode', '-file', 'entime_0_01.txt', '-precision', 16,
                 '-dT', 0.01, '-time', '-node', 1, '-dof', 1, 'accel')
    # opy.recorder('Drift', '-file', 'dtime_0_01.txt', '-precision', 16, '-dT', 0.01, '-time',
    #              '-iNode', 1, '-jNode', 2, '-dof', 1, '-perpDirn', 2)
    opy.timeSeries('Path', 1, '-dt', 0.01, '-values', -0.0, -0.0, -0.0, -0.0,
                   -0.0, -0.0, -0.0, -0.0, -7.51325e-05)
    opy.pattern('Plain', 1, 1)
    opy.load(13, 1.0, 0.0)
    opy.algorithm('Newton', False, False, False)
    opy.system('SparseGeneral')
    opy.numberer('RCM')
    opy.constraints('Transformation')
    opy.integrator('Newmark', 0.5, 0.25)
    opy.rayleigh(0.17952, 0.000909457, 0.0, 0.0)
    opy.analysis('Transient')
    opy.test('EnergyIncr', 1e-07, 10, 0, 2)
    opy.record()
    opy.analyze(1, 0.001)
    for i in range(1100):
        print(i)
        opy.analyze(1, 0.001)
        cur_time = opy.getTime()
    opy.wipe()

    a = open('time_0_01.txt').read().splitlines()
    for i in range(len(a) - 1):
        dt = float(a[i + 1].split()[0]) - float(a[i].split()[0])
        assert abs(dt - 0.01) < 0.0001, (i, dt)
Beispiel #15
0
# create the system of equation
ops.system("BandGeneral")

# create the DOF numberer, the reverse Cuthill-McKee algorithm
ops.numberer("RCM")

# create the constraint handler, a Plain handler is used as h**o constraints
ops.constraints("Plain")

# Create the convergence test, the norm of the residual with a tolerance of
# 1e-12 and a max number of iterations of 10
ops.test("NormDispIncr", 1.0E-12, 10, 3)

# create the solution algorithm, a Newton-Raphson algorithm
ops.algorithm("Newton")

# create the integration scheme, the LoadControl scheme using steps of 0.1
ops.integrator("LoadControl", 0.1)

# create the analysis object
ops.analysis("Static")

# ------------------------------
# End of analysis generation
# ------------------------------

# ------------------------------
# Finally perform the analysis
# ------------------------------
Beispiel #16
0
# create the system of equation
ops.system("BandGeneral")

# create the DOF numberer, the reverse Cuthill-McKee algorithm
ops.numberer("RCM")

# create the constraint handler, a Plain handler is used as h**o constraints
ops.constraints("Plain")

# Create the convergence test, the norm of the residual with a tolerance of 
# 1e-12 and a max number of iterations of 10
ops.test("NormDispIncr", 1.0E-12, 10, 3)

# create the solution algorithm, a Newton-Raphson algorithm
ops.algorithm("Newton")

# create the integration scheme, the LoadControl scheme using steps of 0.1
ops.integrator("LoadControl", 0.1)

# create the analysis object 
ops.analysis("Static")

# ------------------------------
# End of analysis generation
# ------------------------------


# ------------------------------
# Finally perform the analysis
# ------------------------------
Beispiel #17
0
# create the system of equation
ops.system("BandGeneral")

# create the DOF numberer, the reverse Cuthill-McKee algorithm
ops.numberer("RCM")

# create the constraint handler, a Plain handler is used as h**o constraints
ops.constraints("Plain")

# create the convergence test, the norm of the residual with a tolerance of
# 1e-12 and a max number of iterations of 10
ops.test("NormDispIncr", 1.0E-12, 10, 3)

# create the solution algorithm, a Newton-Raphson algorithm
ops.algorithm("Newton")

# create the integration scheme, the LoadControl scheme using steps of 0.1
ops.integrator("LoadControl", 0.1)

# create the analysis object
ops.analysis("Static")

# ------------------------------
# End of analysis generation
# ------------------------------

# ------------------------------
# Finally perform the analysis
# ------------------------------