Beispiel #1
0
def add_beam_hinges(dict_of_hinges, dict_of_hinges_2):

    # obtain nonlinear hinge properties
    data = read_nonlinear_hinge_properties()

    #    dict_of_hinges = {real joint: (new joint, zero length element ID, orientation)}

    # iterate through all the hinges and add the uniaxial material and zero length element to the opensees model
    for key, value in dict_of_hinges.items():
        node_R = key
        node_C = value[0]
        matTag = value[1]
        dirn = value[2]

        row = data.loc[data['Hinge NAME'] == dict_of_hinges_2[matTag]]
        K0 = row['K0'].values[0]
        as_Plus = row['as_Plus'].values[0]
        as_Neg = row['as_Neg'].values[0]
        My_Plus = row['My_Plus'].values[0]
        My_Neg = row['My_Neg'].values[0]
        Lamda_S = row['Lamda_S'].values[0]
        Lamda_C = row['Lamda_C'].values[0]
        Lamda_A = row['Lamda_A'].values[0]
        Lamda_K = row['Lamda_K'].values[0]
        c_S = row['c_S'].values[0]
        c_C = row['c_C'].values[0]
        c_A = row['c_A'].values[0]
        c_K = row['c_K'].values[0]
        theta_p_Plus = row['theta_p_Plus'].values[0]
        theta_p_Neg = row['theta_p_Neg'].values[0]
        theta_pc_Plus = row['theta_pc_Plus'].values[0]
        theta_pc_Neg = row['theta_pc_Neg'].values[0]
        Res_Pos = row['Res_Pos'].values[0]
        Res_Neg = row['Res_Neg'].values[0]
        theta_u_Plus = row['theta_u_Plus'].values[0]
        theta_u_Neg = row['theta_u_Neg'].values[0]
        D_Plus = row['D_Plus'].values[0]
        D_Neg = row['D_Neg'].values[0]
        nFactor = row['nFactor'].values[0]

        # define the uniaxial material
        op.uniaxialMaterial('Bilin', matTag, K0, as_Plus, as_Neg, My_Plus,
                            My_Neg, Lamda_S, Lamda_C, Lamda_A, Lamda_K, c_S,
                            c_C, c_A, c_K, theta_p_Plus, theta_p_Neg,
                            theta_pc_Plus, theta_pc_Neg, Res_Pos, Res_Neg,
                            theta_u_Plus, theta_u_Neg, D_Plus, D_Neg, nFactor)

        # add the zero length element
        op.element('zeroLength', matTag, node_R, node_C, '-mat', matTag,
                   '-dir', dirn, '-doRayleigh', 1)

        # constrain the nodes connecting the rero lengrth element - all DOFs are constrained except the major bending
        op.equalDOF(node_R, node_C, 1, 2, 3, int(9 - dirn), 6)
        op.region(key, matTag)
    return
def ops_node():
    i = 1
    for _i in nodes_high:
        for _j in nodes_width:
            ops.node(i, _j, 0, _i)
            i = i + 1
    for _i in range(1, 7):
        ops.fix(_i, 1, 1, 1, 1, 1, 1)
    for _i in range(1, 67, 6):
        ops.equalDOF(_i, _i + 1, 1, 2, 3, 4, 5, 6)
    for _i in range(5, 71, 6):
        ops.equalDOF(_i, _i + 1, 1, 2, 3, 4, 5, 6)
def get_inelastic_response(fb, asig, extra_time=0.0, xi=0.05, analysis_dt=0.001):
    """
    Run seismic analysis of a nonlinear FrameBuilding

    :param fb: FrameBuilding object
    :param asig: AccSignal object
    :param extra_time: float, additional analysis time after end of ground motion
    :param xi: damping ratio
    :param analysis_dt: time step to perform the analysis
    :return:
    """

    op.wipe()
    op.model('basic', '-ndm', 2, '-ndf', 3)  # 2 dimensions, 3 dof per node

    q_floor = 10000.  # kPa
    trib_width = fb.floor_length
    trib_mass_per_length = q_floor * trib_width / 9.8

    # Establish nodes and set mass based on trib area
    # Nodes named as: C<column-number>-S<storey-number>, first column starts at C1-S0 = ground level left
    nd = OrderedDict()
    col_xs = np.cumsum(fb.bay_lengths)
    col_xs = np.insert(col_xs, 0, 0)
    n_cols = len(col_xs)
    sto_ys = fb.heights
    sto_ys = np.insert(sto_ys, 0, 0)
    for cc in range(1, n_cols + 1):
        for ss in range(fb.n_storeys + 1):
            n_i = cc * 100 + ss
            nd["C%i-S%i" % (cc, ss)] = n_i
            op.node(n_i, col_xs[cc - 1], sto_ys[ss])

            if ss != 0:
                if cc == 1:
                    node_mass = trib_mass_per_length * fb.bay_lengths[0] / 2
                elif cc == n_cols:
                    node_mass = trib_mass_per_length * fb.bay_lengths[-1] / 2
                else:
                    node_mass = trib_mass_per_length * (fb.bay_lengths[cc - 2] + fb.bay_lengths[cc - 1] / 2)
                op.mass(n_i, node_mass)

    # Set all nodes on a storey to have the same displacement
    for ss in range(0, fb.n_storeys + 1):
        for cc in range(1, n_cols + 1):
            op.equalDOF(nd["C%i-S%i" % (1, ss)], nd["C%i-S%i" % (cc, ss)],  opc.X)

    # Fix all base nodes
    for cc in range(1, n_cols + 1):
        op.fix(nd["C%i-S%i" % (cc, 0)], opc.FIXED, opc.FIXED, opc.FIXED)

    # Coordinate transformation
    geo_tag = 1
    trans_args = []
    op.geomTransf("Linear", geo_tag, *[])

    l_hinge = fb.bay_lengths[0] * 0.1

    # Define material
    e_conc = 30.0e6
    i_beams = 0.4 * fb.beam_widths * fb.beam_depths ** 3 / 12
    i_columns = 0.5 * fb.column_widths * fb.column_depths ** 3 / 12
    a_beams = fb.beam_widths * fb.beam_depths
    a_columns = fb.column_widths * fb.column_depths
    ei_beams = e_conc * i_beams
    ei_columns = e_conc * i_columns
    eps_yield = 300.0e6 / 200e9
    phi_y_col = calc_yield_curvature(fb.column_depths, eps_yield)
    phi_y_beam = calc_yield_curvature(fb.beam_depths, eps_yield)

    # Define beams and columns

    md = OrderedDict()  # material dict
    sd = OrderedDict()  # section dict
    ed = OrderedDict()  # element dict
    # Columns named as: C<column-number>-S<storey-number>, first column starts at C1-S0 = ground floor left
    # Beams named as: B<bay-number>-S<storey-number>, first beam starts at B1-S1 = first storey left (foundation at S0)
    for ss in range(fb.n_storeys):

        # set columns
        for cc in range(1, fb.n_cols + 1):
            ele_i = cc * 100 + ss
            md["C%i-S%i" % (cc, ss)] = ele_i
            sd["C%i-S%i" % (cc, ss)] = ele_i
            ed["C%i-S%i" % (cc, ss)] = ele_i
            mat_props = elastic_bilin(ei_columns[ss][cc - 1], 0.05 * ei_columns[ss][cc - 1], phi_y_col[ss][cc - 1])
            #print(opc.ELASTIC_BILIN, ele_i, *mat_props)
            op.uniaxialMaterial(opc.ELASTIC_BILIN, ele_i, *mat_props)
            # op.uniaxialMaterial("Elastic", ele_i, ei_columns[ss][cc - 1])

            node_numbers = [nd["C%i-S%i" % (cc, ss)], nd["C%i-S%i" % (cc, ss + 1)]]
            op.element(opc.ELASTIC_BEAM_COLUMN, ele_i,
                       *node_numbers,
                       a_columns[ss - 1][cc - 1],
                       e_conc,
                       i_columns[ss - 1][cc - 1],
                       geo_tag
                       )

        # Set beams
        for bb in range(1, fb.n_bays + 1):
            ele_i = bb * 10000 + ss
            md["B%i-S%i" % (bb, ss)] = ele_i
            sd["B%i-S%i" % (bb, ss)] = ele_i
            ed["B%i-S%i" % (bb, ss)] = ele_i
            mat_props = elastic_bilin(ei_beams[ss][bb - 1], 0.05 * ei_beams[ss][bb - 1], phi_y_beam[ss][bb - 1])
            op.uniaxialMaterial(opc.ELASTIC_BILIN, ele_i, *mat_props)
            # op.uniaxialMaterial("Elastic", ele_i, ei_beams[ss][bb - 1])
            node_numbers = [nd["C%i-S%i" % (bb, ss + 1)], nd["C%i-S%i" % (bb + 1, ss + 1)]]
            print((opc.BEAM_WITH_HINGES, ele_i,
                       *node_numbers,
                        sd["B%i-S%i" % (bb, ss)], l_hinge,
                       sd["B%i-S%i" % (bb, ss)], l_hinge,
                       sd["B%i-S%i" % (bb, ss)], geo_tag
                       ))
            # Old definition
            # op.element(opc.BEAM_WITH_HINGES, ele_i,
            #  *[nd["C%i-S%i" % (bb, ss - 1)], nd["C%i-S%i" % (bb + 1, ss)]],
            #  sd["B%i-S%i" % (bb, ss)], l_hinge,
            #  sd["B%i-S%i" % (bb, ss)], l_hinge,
            #  e_conc,
            #  a_beams[ss - 1][bb - 1],
            #  i_beams[ss - 1][bb - 1], geo_tag
            #  )
            # New definition
            # op.element(opc.BEAM_WITH_HINGES, ele_i,
            #            *node_numbers,
            #             sd["B%i-S%i" % (bb, ss)], l_hinge,
            #            sd["B%i-S%i" % (bb, ss)], l_hinge,
            #            sd["B%i-S%i" % (bb, ss)], geo_tag  # TODO: make this elastic
            #
            #            )

            # Elastic definition
            op.element(opc.ELASTIC_BEAM_COLUMN, ele_i,
                       *node_numbers,
                       a_beams[ss - 1][bb - 1],
                       e_conc,
                       i_beams[ss - 1][bb - 1],
                       geo_tag
                       )

    # Define the dynamic analysis
    load_tag_dynamic = 1
    pattern_tag_dynamic = 1

    values = list(-1 * asig.values)  # should be negative
    op.timeSeries('Path', load_tag_dynamic, '-dt', asig.dt, '-values', *values)
    op.pattern('UniformExcitation', pattern_tag_dynamic, opc.X, '-accel', load_tag_dynamic)

    # set damping based on first eigen mode
    angular_freq2 = op.eigen('-fullGenLapack', 1)
    if hasattr(angular_freq2, '__len__'):
        angular_freq2 = angular_freq2[0]
    angular_freq = angular_freq2 ** 0.5
    if isinstance(angular_freq, complex):
        raise ValueError("Angular frequency is complex, issue with stiffness or mass")
    alpha_m = 0.0
    beta_k = 2 * xi / angular_freq
    beta_k_comm = 0.0
    beta_k_init = 0.0
    period = angular_freq / 2 / np.pi
    print("period: ", period)

    op.rayleigh(alpha_m, beta_k, beta_k_init, beta_k_comm)

    # Run the dynamic analysis

    op.wipeAnalysis()

    op.algorithm('Newton')
    op.system('SparseGeneral')
    op.numberer('RCM')
    op.constraints('Transformation')
    op.integrator('Newmark', 0.5, 0.25)
    op.analysis('Transient')
    #op.test("NormDispIncr", 1.0e-1, 2, 0)
    tol = 1.0e-10
    iter = 10
    op.test('EnergyIncr', tol, iter, 0, 2)  # TODO: make this test work
    analysis_time = (len(values) - 1) * asig.dt + extra_time
    outputs = {
        "time": [],
        "rel_disp": [],
        "rel_accel": [],
        "rel_vel": [],
        "force": []
    }
    print("Analysis starting")
    while op.getTime() < analysis_time:
        curr_time = op.getTime()
        op.analyze(1, analysis_dt)
        outputs["time"].append(curr_time)
        outputs["rel_disp"].append(op.nodeDisp(nd["C%i-S%i" % (1, fb.n_storeys)], opc.X))
        outputs["rel_vel"].append(op.nodeVel(nd["C%i-S%i" % (1, fb.n_storeys)], opc.X))
        outputs["rel_accel"].append(op.nodeAccel(nd["C%i-S%i" % (1, fb.n_storeys)], opc.X))
        op.reactions()
        react = 0
        for cc in range(1, fb.n_cols):
            react += -op.nodeReaction(nd["C%i-S%i" % (cc, 0)], opc.X)
        outputs["force"].append(react)  # Should be negative since diff node
    op.wipe()
    for item in outputs:
        outputs[item] = np.array(outputs[item])

    return outputs
ops.element('quad', 9, 11, 16, 17, 12, 1, 'PlaneStress', 1)
ops.element('quad', 10, 12, 17, 18, 13, 1, 'PlaneStress', 1)
ops.element('quad', 11, 13, 18, 19, 14, 1, 'PlaneStress', 1)
ops.element('quad', 12, 14, 19, 20, 15, 1, 'PlaneStress', 1)
ops.element('quad', 13, 16, 21, 22, 17, 1, 'PlaneStress', 1)
ops.element('quad', 14, 17, 22, 23, 18, 1, 'PlaneStress', 1)
ops.element('quad', 15, 18, 23, 24, 19, 1, 'PlaneStress', 1)
ops.element('quad', 16, 19, 24, 25, 20, 1, 'PlaneStress', 1)

ops.fix(1, 1, 1)
ops.fix(6, 1, 1)
ops.fix(11, 1, 1)
ops.fix(16, 1, 1)
ops.fix(21, 1, 1)

ops.equalDOF(2, 22, 1, 2)
ops.equalDOF(3, 23, 1, 2)
ops.equalDOF(4, 24, 1, 2)
ops.equalDOF(5, 25, 1, 2)

ops.timeSeries('Linear', 1)
ops.pattern('Plain', 1, 1)
ops.load(15, 0., -1.)

ops.analysis('Static')
ops.analyze(1)

# - plot model
plt.figure()
opsv.plot_model()
plt.axis('equal')
Beispiel #5
0
def analisis_opensees(path, permutaciones):  #helper, #win
    ops.wipe()

    # bucle para generar los x análisis
    for i in range(len(permutaciones)):

        perfil = str(permutaciones[i][0])
        nf = permutaciones[i][2]
        amort = permutaciones[i][3]
        den = permutaciones[i][4]
        vel = permutaciones[i][5]
        capas = len(permutaciones[i][6])
        nstep = permutaciones[i][30]
        dt = float(permutaciones[i][31])

        # creación de elementos
        sElemX = permutaciones[i][1]  # elementos en X
        sElemZ = permutaciones[i][46]  # espesor en Z

        # =============================================================================
        #         ######## geometría de la columna ######
        # =============================================================================
        # límite entre capas
        limite_capa = []
        anterior = 0
        for j in range(capas):
            espesor = permutaciones[i][8][j]

            limite_capa.append(espesor + anterior)
            anterior = limite_capa[j]
            print('Límite de capa: ' + str(limite_capa[j]))

        # creación de elementos y nodos en x
        nElemX = 1  # elementos en x
        nNodeX = 2 * nElemX + 1  # nodos en x

        # creación de elementos y nodos para z
        nElemZ = 1

        # creación de elementos y nodos en Y y totales
        nElemY = []  # elementos en y
        sElemY = []  # dimension en y
        nElemT = 0
        for j in range(capas):
            espesor = permutaciones[i][8][j]

            nElemY.append(2 * espesor)
            nElemT += nElemY[j]
            print('Elementos en capa ' + str(j + 1) + ': ' + str(nElemY[j]))
            sElemY.append(permutaciones[i][8][j] / nElemY[j])
            print('Tamaño de los elementos en capa ' + str(j + 1) + ': ' +
                  str(sElemY[j]) + '\n')

        # number of nodes in vertical direction in each layer
        nNodeY = []  # dimension en y
        nNodeT = 0
        s = 0
        for j in range(capas - 1):
            nNodeY.append(4 * nElemY[j])
            nNodeT += nNodeY[j]
            s += 1
            print('Nodos en capa ' + str(j + 1) + ': ' + str(nNodeY[j]))

        nNodeY.append(4 * (nElemY[-1] + 1))
        nNodeT += nNodeY[-1]
        print('Nodos en capa ' + str(s + 1) + ': ' + str(nNodeY[s]))
        print('Nodos totales: ' + str(nNodeT))

        #win.ui.progressBar.setValue(15)

        # =============================================================================
        #         ######### Crear nodos del suelo ##########
        # =============================================================================
        # creación de nodos de presión de poros
        ops.model('basic', '-ndm', 3, '-ndf', 4)

        with open(path + '/Post-proceso/' + perfil + '/ppNodesInfo.dat',
                  'w') as f:
            count = 0.0
            yCoord = 0.0
            nodos = []
            dryNode = []
            altura_nf = 10 - nf

            for k in range(capas):
                for j in range(0, int(nNodeY[k]), 4):
                    ops.node(j + count + 1, 0.0, yCoord, 0.0)
                    ops.node(j + count + 2, 0.0, yCoord, sElemZ)
                    ops.node(j + count + 3, sElemX, yCoord, sElemZ)
                    ops.node(j + count + 4, sElemX, yCoord, 0.0)

                    f.write(
                        str(int(j + count + 1)) + '\t' + str(0.0) + '\t' +
                        str(yCoord) + '\t' + str(0.0) + '\n')
                    f.write(
                        str(int(j + count + 2)) + '\t' + str(0.0) + '\t' +
                        str(yCoord) + '\t' + str(sElemZ) + '\n')
                    f.write(
                        str(int(j + count + 3)) + '\t' + str(sElemX) + '\t' +
                        str(yCoord) + '\t' + str(sElemZ) + '\n')
                    f.write(
                        str(int(j + count + 4)) + '\t' + str(sElemX) + '\t' +
                        str(yCoord) + '\t' + str(0.0) + '\n')

                    nodos.append(str(j + count + 1))
                    nodos.append(str(j + count + 2))
                    nodos.append(str(j + count + 3))
                    nodos.append(str(j + count + 4))

                    #designate node sobre la superficie de agua
                    if yCoord >= altura_nf:
                        dryNode.append(j + count + 1)
                        dryNode.append(j + count + 2)
                        dryNode.append(j + count + 3)
                        dryNode.append(j + count + 4)

                    yCoord = (yCoord + sElemY[k])

                count = (count + nNodeY[k])

        print("Finished creating all soil nodes...")

        # =============================================================================
        #         ####### Condiciones de contorno en la base de la columna #########
        # =============================================================================
        ops.fix(1, *[0, 1, 1, 0])
        ops.fix(2, *[0, 1, 1, 0])
        ops.fix(3, *[0, 1, 1, 0])
        ops.fix(4, *[0, 1, 1, 0])
        ops.equalDOF(1, 2, 1)
        ops.equalDOF(1, 3, 1)
        ops.equalDOF(1, 4, 1)

        print('Fin de creación de nodos de la base de la columna\n\n')

        # =============================================================================
        #         ####### Condiciones de contorno en los nudos restantes #########
        # =============================================================================

        count = 0
        for k in range(5, int(nNodeT + 1), 4):
            ops.equalDOF(k, k + 1, *[1, 2, 3])
            ops.equalDOF(k, k + 2, *[1, 2, 3])
            ops.equalDOF(k, k + 3, *[1, 2, 3])

        print('Fin de creación equalDOF para nodos de presión de poros\n\n')

        for j in range(len(dryNode)):
            ops.fix(dryNode[j], *[0, 0, 0, 1])

        print("Finished creating all soil boundary conditions...")

        # =============================================================================
        #         ####### crear elemento y material de suelo #########
        # =============================================================================

        cargas = []
        for j in range(capas):
            pendiente = permutaciones[i][9][j]
            slope = math.atan(pendiente / 100)

            tipo_suelo = permutaciones[i][6][j]
            rho = permutaciones[i][10][j]
            Gr = permutaciones[i][12][j]
            Br = permutaciones[i][13][j]
            fric = permutaciones[i][15][j]
            refpress = permutaciones[i][18][j]
            gmax = permutaciones[i][19][j]
            presscoef = permutaciones[i][20][j]
            surf = permutaciones[i][21][j]
            ev = permutaciones[i][22][j]
            cc1 = permutaciones[i][23][j]
            cc3 = permutaciones[i][24][j]
            cd1 = permutaciones[i][25][j]
            cd3 = permutaciones[i][26][j]
            ptang = permutaciones[i][27][j]
            coh = permutaciones[i][28][j]

            if tipo_suelo == 'No cohesivo':
                if float(surf) > 0:
                    ops.nDMaterial('PressureDependMultiYield02', j + 1, 3.0,
                                   rho, Gr, Br, fric, gmax, refpress,
                                   presscoef, ptang, cc1, cc3, cd1, cd3,
                                   float(surf), 5.0, 3.0, *[1.0, 0.0], ev,
                                   *[0.9, 0.02, 0.7, 101.0])
                else:
                    ops.nDMaterial('PressureDependMultiYield02', j + 1, 3.0,
                                   rho, Gr, Br, fric, gmax, refpress,
                                   presscoef, ptang, cc1, cc3, cd1, cd3,
                                   float(surf), *permutaciones[i][29][j], 5.0,
                                   3.0, *[1.0,
                                          0.0], ev, *[0.9, 0.02, 0.7, 101.0])

            cargas.append(
                [0.0, -9.81 * math.cos(slope), -9.81 * math.sin(slope)])

        print('Fin de la creación de material de suelo\n\n')

        #-----------------------------------------------------------------------------------------
        #  5. CREATE SOIL ELEMENTS
        #-----------------------------------------------------------------------------------------

        count = 0
        alpha = 1.5e-6

        with open(path + '/Post-proceso/' + perfil + '/ppElemInfo.dat',
                  'w') as f:
            # crear elemento de suelo
            for k in range(capas):
                for j in range(int(nElemY[k])):
                    nI = 4 * (j + count + 1) - 3
                    nJ = nI + 1
                    nK = nI + 2
                    nL = nI + 3
                    nM = nI + 4
                    nN = nI + 5
                    nO = nI + 6
                    nP = nI + 7
                    f.write(
                        str(j + count + 1) + '\t' + str(nI) + '\t' + str(nJ) +
                        '\t' + str(nK) + '\t' + str(nL) + '\t' + str(nM) +
                        '\t' + str(nN) + '\t' + str(nO) + '\t' + str(nP) +
                        '\n')

                    Bc = permutaciones[i][14][k]
                    ev = permutaciones[i][22][k]

                    ops.element('SSPbrickUP', (j + count + 1),
                                *[nI, nJ, nK, nL, nM, nN, nO,
                                  nP], (k + 1), float(Bc), 1.0, 1.0, 1.0, 1.0,
                                float(ev), alpha, cargas[k][0], cargas[k][1],
                                cargas[k][2])

                count = (count + int(nElemY[k]))
        print('Fin de la creación del elemento del suelo\n\n')

        #win.ui.progressBar.setValue(25)

        # =============================================================================
        #         ######### Amortiguamiento de Lysmer ##########
        # =============================================================================

        ops.model('basic', '-ndm', 3, '-ndf', 3)

        # definir nodos y coordenadas del amortiguamiento
        dashF = nNodeT + 1
        dashX = nNodeT + 2
        dashZ = nNodeT + 3

        ops.node(dashF, 0.0, 0.0, 0.0)
        ops.node(dashX, 0.0, 0.0, 0.0)
        ops.node(dashZ, 0.0, 0.0, 0.0)

        # definir restricciones para los nodos de amortiguamiento
        ops.fix(dashF, 1, 1, 1)
        ops.fix(dashX, 0, 1, 1)
        ops.fix(dashZ, 1, 1, 0)

        # definir equalDOF para el amortiguamiento en la base del suelo
        ops.equalDOF(1, dashX, 1)
        ops.equalDOF(1, dashZ, 3)

        print(
            'Fin de la creación de condiciones de contorno de los nodos de amortiguamiento\n\n'
        )

        # definir el material de amortiguamiento
        colArea = sElemX * sElemZ
        dashpotCoeff = vel * den * colArea
        ops.uniaxialMaterial('Viscous', capas + 1, dashpotCoeff, 1.0)

        # definir el elemento
        ops.element('zeroLength', nElemT + 1, *[dashF, dashX], '-mat',
                    capas + 1, '-dir', *[1])
        ops.element('zeroLength', nElemT + 2, *[dashF, dashZ], '-mat',
                    capas + 1, '-dir', *[3])

        print('Fin de la creación del elemento de amortiguamiento\n\n')

        #-----------------------------------------------------------------------------------------
        #  9. DEFINE ANALYSIS PARAMETERS
        #-----------------------------------------------------------------------------------------

        # amortiguamiento de Rayleigh
        # frecuencia menor
        omega1 = 2 * math.pi * 0.2
        # frecuencia mayor
        omega2 = 2 * math.pi * 20

        a0 = 2.0 * (amort / 100) * omega1 * omega2 / (omega1 + omega2)
        a1 = 2.0 * (amort / 100) / (omega1 + omega2)
        print('Coeficientes de amortiguamiento' + '\n' + 'a0: ' +
              format(a0, '.6f') + '\n' + 'a1: ' + format(a1, '.6f') + '\n\n')

        #win.ui.progressBar.setValue(35)

        # =============================================================================
        #         ######## Determinación de análisis estático #########
        # =============================================================================
        #---DETERMINE STABLE ANALYSIS TIME STEP USING CFL CONDITION
        # se determina a partir de un análisis transitorio de largo tiempo
        duration = nstep * dt

        # tamaño mínimo del elemento y velocidad máxima
        minSize = sElemY[0]
        vsMax = permutaciones[i][11][0]
        for j in range(1, capas):
            if sElemY[j] < minSize:
                minSize = sElemY[j]
            if permutaciones[i][11][j] > vsMax:
                vsMax = permutaciones[i][11][j]

        # trial analysis time step
        kTrial = minSize / (vsMax**0.5)

        # tiempo de análisis y pasos de tiempo
        if dt <= kTrial:
            nStep = nstep
            dT = dt
        else:
            nStep = int(math.floor(duration / kTrial) + 1)
            dT = duration / nStep

        print('Número de pasos en el análisis: ' + str(nStep) + '\n')
        print('Incremento de tiempo: ' + str(dT) + '\n\n')

        #----------------------------------------------------------------------------------------
        #  7. GRAVITY ANALYSIS
        #-----------------------------------------------------------------------------------------
        ops.model('basic', '-ndm', 3, '-ndf', 4)

        ops.updateMaterialStage('-material', int(k + 1), '-stage', 0)

        # algoritmo de análisis estático
        ops.constraints(permutaciones[i][32][0],
                        float(permutaciones[i][32][1]),
                        float(permutaciones[i][32][2]))
        ops.test(permutaciones[i][34][0], float(permutaciones[i][34][1]),
                 int(permutaciones[i][34][2]), int(permutaciones[i][34][3]))
        ops.algorithm(permutaciones[i][38][0])
        ops.numberer(permutaciones[i][33][0])
        ops.system(permutaciones[i][36][0])
        ops.integrator(permutaciones[i][35][0], float(permutaciones[i][35][1]),
                       float(permutaciones[i][35][2]))
        ops.analysis(permutaciones[i][37][0])

        print('Inicio de análisis estático elástico\n\n')

        ops.start()
        ops.analyze(20, 5.0e2)

        print('Fin de análisis estático elástico\n\n')

        #win.ui.progressBar.setValue(40)

        # update materials to consider plastic behavior

        # =============================================================================

        ops.updateMaterialStage('-material', int(k + 1), '-stage', 1)

        # =============================================================================

        # plastic gravity loading
        print('Inicio de análisis estático plástico\n\n')

        ok = ops.analyze(40, 5.0e-2)

        if ok != 0:
            error = 'Error de convergencia en análisis estático de modelo' + str(
                perfil) + '\n\n'
            print(error)

            break

        print('Fin de análisis estático plástico\n\n')

        #-----------------------------------------------------------------------------------------
        #  11. UPDATE ELEMENT PERMEABILITY VALUES FOR POST-GRAVITY ANALYSIS
        #-----------------------------------------------------------------------------------------

        ini = 1
        aum = 0
        sum = 0
        for j in range(capas):
            #Layer 3
            ops.setParameter(
                '-val', permutaciones[i][16][j],
                ['-eleRange',
                 int(ini + aum),
                 int(nElemY[j] + sum)], 'xPerm')
            ops.setParameter(
                '-val', permutaciones[i][17][j],
                ['-eleRange',
                 int(ini + aum),
                 int(nElemY[j] + sum)], 'yPerm')
            ops.setParameter(
                '-val', permutaciones[i][16][j],
                ['-eleRange',
                 int(ini + aum),
                 int(nElemY[j] + sum)], 'zPerm')

            ini = nElemY[j] + sum
            sum += nElemY[j]
            aum = 1

        print("Finished updating permeabilities for dynamic analysis...")

        # =============================================================================
        #         ########### Grabadores dinámicos ##########
        # =============================================================================

        ops.setTime(0.0)
        ops.wipeAnalysis()
        ops.remove('recorders')

        # tiempo de la grabadora
        recDT = 10 * dt
        path_acel = path + '/Post-proceso/' + perfil + '/dinamico/aceleraciones/'

        ops.recorder('Node', '-file', path_acel + 'accelerationx.out', '-time',
                     '-dT', recDT, '-node', *nodos, '-dof', 1, 'accel')

        print('Fin de creación de grabadores\n\n')
        #win.ui.progressBar.setValue(50)

        # =============================================================================
        #         ######### Determinación de análisis dinámico ##########
        # =============================================================================

        # objeto de serie temporal para el historial de fuerza

        path_vel = path + '/Pre-proceso/' + perfil + '/TREASISL2.txt'

        ops.timeSeries('Path', 1, '-dt', dt, '-filePath', path_vel, '-factor',
                       dashpotCoeff)

        ops.pattern('Plain', 10, 1)
        ops.load(1, *[1.0, 0.0, 0.0, 0.0])  #CAMBIO REALIZADO OJO

        print('Fin de creación de carga dinámica\n\n')

        # algoritmo de análisis dinámico
        ops.constraints(permutaciones[i][39][0],
                        float(permutaciones[i][39][1]),
                        float(permutaciones[i][39][2]))
        ops.test(permutaciones[i][41][0], float(permutaciones[i][41][1]),
                 int(permutaciones[i][41][2]), int(permutaciones[i][41][3]))
        ops.algorithm(permutaciones[i][45][0])
        ops.numberer(permutaciones[i][40][0])
        ops.system(permutaciones[i][43][0])
        ops.integrator(permutaciones[i][42][0], float(permutaciones[i][42][1]),
                       float(permutaciones[i][42][2]))
        ops.analysis(permutaciones[i][44][0])
        # =============================================================================
        #         ops.rayleigh(a0, a1, 0.0, 0.0)
        # =============================================================================

        print('Inicio de análisis dinámico\n\n')
        #win.ui.progressBar.setValue(85)
        ok = ops.analyze(nStep, dT)

        if ok != 0:
            error = 'Error de convergencia en análisis dinámico de modelo' + str(
                permutaciones[i][0]) + '\n\n'
            print(error)
            curTime = ops.getTime()
            mTime = curTime
            print('cursTime:' + str(curTime))
            curStep = (curTime / dT)
            print('cursStep:' + str(curStep))
            rStep = (nStep - curStep) * 2.0
            remStep = int(nStep - curStep) * 2.0
            print('remSTep:' + str(curStep))
            dT = (dT / 2)
            print('dT:' + str(dT))

            ops.analyze(remStep, dT)

            if ok != 0:
                error = 'Error de convergencia en análisis dinámico de modelo' + str(
                    permutaciones[i][0]) + '\n\n'
                print(error)
                curTime = ops.getTime()
                print('cursTime:' + str(curTime))
                curStep = (curTime - mTime) / dT
                print('cursStep:' + str(curStep))
                remStep = int(rStep - curStep) * 2
                print('remSTep:' + str(curStep))
                dT = (dT / 2)
                print('dT:' + str(dT))

                ops.analyze(remStep, dT)

        print('Fin de análisis dinámico\n\n')

    ops.wipe()
    def __init__(self):
        # AIが取れるアクションの設定
        self.action = np.array([
            0, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
        ])
        self.naction = len(self.action)

        self.beta = 1 / 4

        # 1質点系モデル
        self.T0 = 4
        self.h = self.action[0]
        self.hs = [self.h]
        self.m = 100
        self.k = 4 * np.pi**2 * self.m / self.T0**2

        # 入力地震動
        self.dt = 0.02
        to_meter = 0.01  # cmをmに変換する値
        self.wave_url = 'https://github.com/kakemotokeita/dqn-seismic-control/blob/master/wave/sample.csv'
        with urllib.request.urlopen(self.wave_url) as wave_file:
            self.wave_data = np.loadtxt(
                wave_file, usecols=(0, ), delimiter=',', skiprows=3) * to_meter

        # OpenSees設定
        op.wipe()
        op.model('basic', '-ndm', 2, '-ndf', 3)  # 2 dimensions, 3 dof per node

        # 節点
        self.bot_node = 1
        self.top_node = 2
        op.node(self.bot_node, 0., 0.)
        op.node(self.top_node, 0., 0.)

        # 境界条件
        op.fix(self.top_node, FREE, FIXED, FIXED)
        op.fix(self.bot_node, FIXED, FIXED, FIXED)
        op.equalDOF(1, 2, *[Y, ROTZ])

        # 質量
        op.mass(self.top_node, self.m, 0., 0.)

        # 弾性剛性
        elastic_mat_tag = 1
        Fy = 1e10
        E0 = self.k
        b = 1.0
        op.uniaxialMaterial('Steel01', elastic_mat_tag, Fy, E0, b)

        # Assign zero length element
        beam_tag = 1
        op.element('zeroLength', beam_tag, self.bot_node, self.top_node,
                   "-mat", elastic_mat_tag, "-dir", 1, '-doRayleigh', 1)

        # Define the dynamic analysis
        load_tag_dynamic = 1
        pattern_tag_dynamic = 1

        self.values = list(-1 * self.wave_data)  # should be negative
        op.timeSeries('Path', load_tag_dynamic, '-dt', self.dt, '-values',
                      *self.values)
        op.pattern('UniformExcitation', pattern_tag_dynamic, X, '-accel',
                   load_tag_dynamic)

        # 減衰の設定
        self.w0 = op.eigen('-fullGenLapack', 1)[0]**0.5
        self.alpha_m = 0.0
        self.beta_k = 2 * self.h / self.w0
        self.beta_k_init = 0.0
        self.beta_k_comm = 0.0

        op.rayleigh(self.alpha_m, self.beta_k, self.beta_k_init,
                    self.beta_k_comm)

        # Run the dynamic analysis

        op.wipeAnalysis()

        op.algorithm('Newton')
        op.system('SparseGeneral')
        op.numberer('RCM')
        op.constraints('Transformation')
        op.integrator('Newmark', 0.5, 0.25)
        op.analysis('Transient')

        tol = 1.0e-10
        iterations = 10
        op.test('EnergyIncr', tol, iterations, 0, 2)
        self.i_pre = 0
        self.i = 0
        self.i_next = 0
        self.time = 0
        self.analysis_time = (len(self.values) - 1) * self.dt
        self.dis = 0
        self.vel = 0
        self.acc = 0
        self.a_acc = 0
        self.force = 0
        self.resp = {
            "time": [],
            "dis": [],
            "acc": [],
            "a_acc": [],
            "vel": [],
            "force": [],
        }
        self.done = False
Beispiel #7
0
def RunAnalysis():
    AnalysisType = 'Pushover'
    #  Pushover  Gravity

    ## ------------------------------
    ## Start of model generation
    ## -----------------------------
    # remove existing model
    ops.wipe()

    # set modelbuilder
    ops.model('basic', '-ndm', 2, '-ndf', 3)

    import math

    ############################################
    ### Units and Constants  ###################
    ############################################

    inch = 1
    kip = 1
    sec = 1

    # Dependent units
    sq_in = inch * inch
    ksi = kip / sq_in
    ft = 12 * inch

    # Constants
    g = 386.2 * inch / (sec * sec)
    pi = math.acos(-1)

    #######################################
    ##### Dimensions
    #######################################

    # Dimensions Input
    H_story = 10.0 * ft
    W_bayX = 16.0 * ft
    W_bayY_ab = 5.0 * ft + 10.0 * inch
    W_bayY_bc = 8.0 * ft + 4.0 * inch
    W_bayY_cd = 5.0 * ft + 10.0 * inch

    # Calculated dimensions
    W_structure = W_bayY_ab + W_bayY_bc + W_bayY_cd

    ################
    ### Material
    ################

    # Steel02 Material

    matTag = 1
    matConnAx = 2
    matConnRot = 3

    Fy = 60.0 * ksi
    # Yield stress
    Es = 29000.0 * ksi
    # Modulus of Elasticity of Steel
    v = 0.2
    # Poisson's ratio
    Gs = Es / (1 + v)
    # Shear modulus
    b = 0.10
    # Strain hardening ratio
    params = [18.0, 0.925, 0.15]  # R0,cR1,cR2
    R0 = 18.0
    cR1 = 0.925
    cR2 = 0.15
    a1 = 0.05
    a2 = 1.00
    a3 = 0.05
    a4 = 1.0
    sigInit = 0.0
    alpha = 0.05

    ops.uniaxialMaterial('Steel02', matTag, Fy, Es, b, R0, cR1, cR2, a1, a2,
                         a3, a4, sigInit)

    # ##################
    # ## Sections
    # ##################

    colSecTag1 = 1
    colSecTag2 = 2
    beamSecTag1 = 3
    beamSecTag2 = 4
    beamSecTag3 = 5

    # COMMAND: section('WFSection2d', secTag, matTag, d, tw, bf, tf, Nfw, Nff)

    ops.section('WFSection2d', colSecTag1, matTag, 10.5 * inch, 0.26 * inch,
                5.77 * inch, 0.44 * inch, 15, 16)  # outer Column
    ops.section('WFSection2d', colSecTag2, matTag, 10.5 * inch, 0.26 * inch,
                5.77 * inch, 0.44 * inch, 15, 16)  # Inner Column

    ops.section('WFSection2d', beamSecTag1, matTag, 8.3 * inch, 0.44 * inch,
                8.11 * inch, 0.685 * inch, 15, 15)  # outer Beam
    ops.section('WFSection2d', beamSecTag2, matTag, 8.2 * inch, 0.40 * inch,
                8.01 * inch, 0.650 * inch, 15, 15)  # Inner Beam
    ops.section('WFSection2d', beamSecTag3, matTag, 8.0 * inch, 0.40 * inch,
                7.89 * inch, 0.600 * inch, 15, 15)  # Inner Beam

    # Beam size - W10x26
    Abeam = 7.61 * inch * inch
    IbeamY = 144. * (inch**4)
    # Inertia along horizontal axis
    IbeamZ = 14.1 * (inch**4)
    # inertia along vertical axis

    # BRB input data
    Acore = 2.25 * inch
    Aend = 10.0 * inch
    LR_BRB = 0.55

    # ###########################
    # ##### Nodes
    # ###########################

    # Create All main nodes
    ops.node(1, 0.0, 0.0)
    ops.node(2, W_bayX, 0.0)
    ops.node(3, 2 * W_bayX, 0.0)

    ops.node(11, 0.0, H_story)
    ops.node(12, W_bayX, H_story)
    ops.node(13, 2 * W_bayX, H_story)

    ops.node(21, 0.0, 2 * H_story)
    ops.node(22, W_bayX, 2 * H_story)
    ops.node(23, 2 * W_bayX, 2 * H_story)

    ops.node(31, 0.0, 3 * H_story)
    ops.node(32, W_bayX, 3 * H_story)
    ops.node(33, 2 * W_bayX, 3 * H_story)

    # Beam Connection nodes

    ops.node(1101, 0.0, H_story)
    ops.node(1201, W_bayX, H_story)
    ops.node(1202, W_bayX, H_story)
    ops.node(1301, 2 * W_bayX, H_story)

    ops.node(2101, 0.0, 2 * H_story)
    ops.node(2201, W_bayX, 2 * H_story)
    ops.node(2202, W_bayX, 2 * H_story)
    ops.node(2301, 2 * W_bayX, 2 * H_story)

    ops.node(3101, 0.0, 3 * H_story)
    ops.node(3201, W_bayX, 3 * H_story)
    ops.node(3202, W_bayX, 3 * H_story)
    ops.node(3301, 2 * W_bayX, 3 * H_story)

    # ###############
    #  Constraints
    # ###############

    ops.fix(1, 1, 1, 1)
    ops.fix(2, 1, 1, 1)
    ops.fix(3, 1, 1, 1)

    # #######################
    # ### Elements
    # #######################

    # ### Assign beam-integration tags

    ColIntTag1 = 1
    ColIntTag2 = 2
    BeamIntTag1 = 3
    BeamIntTag2 = 4
    BeamIntTag3 = 5

    ops.beamIntegration('Lobatto', ColIntTag1, colSecTag1, 4)
    ops.beamIntegration('Lobatto', ColIntTag2, colSecTag2, 4)
    ops.beamIntegration('Lobatto', BeamIntTag1, beamSecTag1, 4)
    ops.beamIntegration('Lobatto', BeamIntTag2, beamSecTag2, 4)
    ops.beamIntegration('Lobatto', BeamIntTag3, beamSecTag3, 4)

    # Assign geometric transformation

    ColTransfTag = 1
    BeamTranfTag = 2

    ops.geomTransf('PDelta', ColTransfTag)
    ops.geomTransf('Linear', BeamTranfTag)

    # Assign Elements  ##############

    # ## Add non-linear column elements
    ops.element('forceBeamColumn', 1, 1, 11, ColTransfTag, ColIntTag1, '-mass',
                0.0)
    ops.element('forceBeamColumn', 2, 2, 12, ColTransfTag, ColIntTag2, '-mass',
                0.0)
    ops.element('forceBeamColumn', 3, 3, 13, ColTransfTag, ColIntTag1, '-mass',
                0.0)

    ops.element('forceBeamColumn', 11, 11, 21, ColTransfTag, ColIntTag1,
                '-mass', 0.0)
    ops.element('forceBeamColumn', 12, 12, 22, ColTransfTag, ColIntTag2,
                '-mass', 0.0)
    ops.element('forceBeamColumn', 13, 13, 23, ColTransfTag, ColIntTag1,
                '-mass', 0.0)

    ops.element('forceBeamColumn', 21, 21, 31, ColTransfTag, ColIntTag1,
                '-mass', 0.0)
    ops.element('forceBeamColumn', 22, 22, 32, ColTransfTag, ColIntTag2,
                '-mass', 0.0)
    ops.element('forceBeamColumn', 23, 23, 33, ColTransfTag, ColIntTag1,
                '-mass', 0.0)

    #  ### Add linear main beam elements, along x-axis
    #element('elasticBeamColumn', 101, 1101, 1201, Abeam, Es, Gs, Jbeam, IbeamY, IbeamZ, beamTransfTag, '-mass', 0.0)

    ops.element('forceBeamColumn', 101, 1101, 1201, BeamTranfTag, BeamIntTag1,
                '-mass', 0.0)
    ops.element('forceBeamColumn', 102, 1202, 1301, BeamTranfTag, BeamIntTag1,
                '-mass', 0.0)

    ops.element('forceBeamColumn', 201, 2101, 2201, BeamTranfTag, BeamIntTag2,
                '-mass', 0.0)
    ops.element('forceBeamColumn', 202, 2202, 2301, BeamTranfTag, BeamIntTag2,
                '-mass', 0.0)

    ops.element('forceBeamColumn', 301, 3101, 3201, BeamTranfTag, BeamIntTag3,
                '-mass', 0.0)
    ops.element('forceBeamColumn', 302, 3202, 3301, BeamTranfTag, BeamIntTag3,
                '-mass', 0.0)

    # Assign constraints between beam end nodes and column nodes (RIgid beam column connections)
    ops.equalDOF(11, 1101, 1, 2, 3)
    ops.equalDOF(12, 1201, 1, 2, 3)
    ops.equalDOF(12, 1202, 1, 2, 3)
    ops.equalDOF(13, 1301, 1, 2, 3)

    ops.equalDOF(21, 2101, 1, 2, 3)
    ops.equalDOF(22, 2201, 1, 2, 3)
    ops.equalDOF(22, 2202, 1, 2, 3)
    ops.equalDOF(23, 2301, 1, 2, 3)

    ops.equalDOF(31, 3101, 1, 2, 3)
    ops.equalDOF(32, 3201, 1, 2, 3)
    ops.equalDOF(32, 3202, 1, 2, 3)
    ops.equalDOF(33, 3301, 1, 2, 3)

    AllNodes = ops.getNodeTags()
    massX = 0.49

    for nodes in AllNodes:
        ops.mass(nodes, massX, massX, 0.00001)

    ################
    ## Gravity Load
    ################
    # create TimeSeries
    ops.timeSeries("Linear", 1)

    # create a plain load pattern
    ops.pattern("Plain", 1, 1)

    # Create the nodal load
    ops.load(11, 0.0, -5.0 * kip, 0.0)
    ops.load(12, 0.0, -6.0 * kip, 0.0)
    ops.load(13, 0.0, -5.0 * kip, 0.0)

    ops.load(21, 0., -5. * kip, 0.0)
    ops.load(22, 0., -6. * kip, 0.0)
    ops.load(23, 0., -5. * kip, 0.0)

    ops.load(31, 0., -5. * kip, 0.0)
    ops.load(32, 0., -6. * kip, 0.0)
    ops.load(33, 0., -5. * kip, 0.0)

    ###############################
    ### PUSHOVER ANALYSIS
    ###############################

    if (AnalysisType == "Pushover"):

        print("<<<< Running Pushover Analysis >>>>")

        # Create load pattern for pushover analysis
        # create a plain load pattern
        ops.pattern("Plain", 2, 1)

        ops.load(11, 1.61, 0.0, 0.0)
        ops.load(21, 3.22, 0.0, 0.0)
        ops.load(31, 4.83, 0.0, 0.0)

        ControlNode = 31
        ControlDOF = 1
        MaxDisp = 0.15 * H_story
        DispIncr = 0.1
        NstepsPush = int(MaxDisp / DispIncr)

        Model = 'test'
        LoadCase = 'Pushover'
        dt = 0.2
        opp.createODB(Model, LoadCase, Nmodes=3)

        ops.system("ProfileSPD")
        ops.numberer("Plain")
        ops.constraints("Plain")
        ops.integrator("DisplacementControl", ControlNode, ControlDOF,
                       DispIncr)
        ops.algorithm("Newton")
        ops.test('NormUnbalance', 1e-8, 10)
        ops.analysis("Static")

        # 	analyze(NstepsPush)
        ops.analyze(100)

        print("Pushover analysis complete")
Beispiel #8
0
def test_PortalFrame2d():

    # set some properties
    print("================================================")
    print("PortalFrame2d.py: Verification 2d Elastic Frame")
    print("  - eigenvalue and static pushover analysis")

    ops.wipe()

    ops.model('Basic', '-ndm', 2)

    # properties

    #    units kip, ft

    numBay = 2
    numFloor = 7

    bayWidth = 360.0
    storyHeights = [162.0, 162.0, 156.0, 156.0, 156.0, 156.0, 156.0]

    E = 29500.0
    massX = 0.49
    M = 0.
    coordTransf = "Linear"  # Linear, PDelta, Corotational
    massType = "-lMass"  # -lMass, -cMass

    beams = [
        'W24X160', 'W24X160', 'W24X130', 'W24X130', 'W24X110', 'W24X110',
        'W24X110'
    ]
    eColumn = [
        'W14X246', 'W14X246', 'W14X246', 'W14X211', 'W14X211', 'W14X176',
        'W14X176'
    ]
    iColumn = [
        'W14X287', 'W14X287', 'W14X287', 'W14X246', 'W14X246', 'W14X211',
        'W14X211'
    ]
    columns = [eColumn, iColumn, eColumn]

    WSection = {
        'W14X176': [51.7, 2150.],
        'W14X211': [62.1, 2670.],
        'W14X246': [72.3, 3230.],
        'W14X287': [84.4, 3910.],
        'W24X110': [32.5, 3330.],
        'W24X130': [38.3, 4020.],
        'W24X160': [47.1, 5120.]
    }

    nodeTag = 1

    # procedure to read
    def ElasticBeamColumn(eleTag, iNode, jNode, sectType, E, transfTag, M,
                          massType):

        found = 0

        prop = WSection[sectType]

        A = prop[0]
        I = prop[1]
        ops.element('elasticBeamColumn', eleTag, iNode, jNode, A, E, I,
                    transfTag, '-mass', M, massType)

    # add the nodes
    #  - floor at a time
    yLoc = 0.
    for j in range(0, numFloor + 1):

        xLoc = 0.
        for i in range(0, numBay + 1):
            ops.node(nodeTag, xLoc, yLoc)
            xLoc += bayWidth
            nodeTag += 1

        if j < numFloor:
            storyHeight = storyHeights[j]

        yLoc += storyHeight

    # fix first floor
    ops.fix(1, 1, 1, 1)
    ops.fix(2, 1, 1, 1)
    ops.fix(3, 1, 1, 1)

    #rigid floor constraint & masses
    nodeTagR = 5
    nodeTag = 4
    for j in range(1, numFloor + 1):
        for i in range(0, numBay + 1):

            if nodeTag != nodeTagR:
                ops.equalDOF(nodeTagR, nodeTag, 1)
            else:
                ops.mass(nodeTagR, massX, 1.0e-10, 1.0e-10)

            nodeTag += 1

        nodeTagR += numBay + 1

    # add the columns
    # add column element
    ops.geomTransf(coordTransf, 1)
    eleTag = 1
    for j in range(0, numBay + 1):

        end1 = j + 1
        end2 = end1 + numBay + 1
        thisColumn = columns[j]

        for i in range(0, numFloor):
            secType = thisColumn[i]
            ElasticBeamColumn(eleTag, end1, end2, secType, E, 1, M, massType)
            end1 = end2
            end2 += numBay + 1
            eleTag += 1

    # add beam elements
    for j in range(1, numFloor + 1):
        end1 = (numBay + 1) * j + 1
        end2 = end1 + 1
        secType = beams[j - 1]
        for i in range(0, numBay):
            ElasticBeamColumn(eleTag, end1, end2, secType, E, 1, M, massType)
            end1 = end2
            end2 = end1 + 1
            eleTag += 1

    # calculate eigenvalues & print results
    numEigen = 7
    eigenValues = ops.eigen(numEigen)
    PI = 2 * asin(1.0)

    #
    # apply loads for static analysis & perform analysis
    #

    ops.timeSeries('Linear', 1)
    ops.pattern('Plain', 1, 1)
    ops.load(22, 20.0, 0., 0.)
    ops.load(19, 15.0, 0., 0.)
    ops.load(16, 12.5, 0., 0.)
    ops.load(13, 10.0, 0., 0.)
    ops.load(10, 7.5, 0., 0.)
    ops.load(7, 5.0, 0., 0.)
    ops.load(4, 2.5, 0., 0.)

    ops.integrator('LoadControl', 1.0)
    ops.algorithm('Linear')
    ops.analysis('Static')
    ops.analyze(1)

    # determine PASS/FAILURE of test
    ok = 0

    #
    # print pretty output of comparsions
    #

    #               SAP2000   SeismoStruct
    comparisonResults = [[
        1.2732, 0.4313, 0.2420, 0.1602, 0.1190, 0.0951, 0.0795
    ], [1.2732, 0.4313, 0.2420, 0.1602, 0.1190, 0.0951, 0.0795]]
    print("\n\nPeriod Comparisons:")
    print('{:>10}{:>15}{:>15}{:>15}'.format('Period', 'OpenSees', 'SAP2000',
                                            'SeismoStruct'))

    #formatString {%10s%15.5f%15.4f%15.4f}
    for i in range(0, numEigen):
        lamb = eigenValues[i]
        period = 2 * PI / sqrt(lamb)
        print('{:>10}{:>15.5f}{:>15.4f}{:>15.4f}'.format(
            i + 1, period, comparisonResults[0][i], comparisonResults[1][i]))
        resultOther = comparisonResults[0][i]
        if abs(period - resultOther) > 9.99e-5:
            ok = -1

    # print table of camparsion
    #       Parameter          SAP2000   SeismoStruct
    comparisonResults = [[
        "Disp Top", "Axial Force Bottom Left", "Moment Bottom Left"
    ], [1.45076, 69.99, 2324.68], [1.451, 70.01, 2324.71]]
    tolerances = [9.99e-6, 9.99e-3, 9.99e-3]

    print("\n\nSatic Analysis Result Comparisons:")
    print('{:>30}{:>15}{:>15}{:>15}'.format('Parameter', 'OpenSees', 'SAP2000',
                                            'SeismoStruct'))
    for i in range(3):
        response = ops.eleResponse(1, 'forces')
        if i == 0:
            result = ops.nodeDisp(22, 1)
        elif i == 1:
            result = abs(response[1])
        else:
            result = response[2]

        print('{:>30}{:>15.3f}{:>15.2f}{:>15.2f}'.format(
            comparisonResults[0][i], result, comparisonResults[1][i],
            comparisonResults[2][i]))
        resultOther = comparisonResults[1][i]
        tol = tolerances[i]
        if abs(result - resultOther) > tol:
            ok = -1
            print("failed-> ", i, abs(result - resultOther), tol)

    assert ok == 0
def test_EigenAnal_twoStoryShearFrame7():
    ops.wipe()

    #input
    m =  100.0/386.0
    numModes = 2

    #material
    Ac = 63.41
    Ic = 320.0
    E = 30000.0
    Ib = 10e+12
    Ab = 63.41

    #geometry
    L = 288.
    h = 144.

    # define the model
    #---------------------------------
    #model builder
    ops.model('BasicBuilder', '-ndm', 2, '-ndf', 3)					

    # nodal coordinates:
    ops.node(1,   0.,  0.) 
    ops.node(2,   L,  0. )
    ops.node(3,   0.,  h )
    ops.node(4,   L,  h )
    ops.node(5,   0.,   2*h)
    ops.node(6,   L,   2*h)

    # Single point constraints -- Boundary Conditions
    ops.fix(1, 1, 1, 1)
    ops.fix(2, 1, 1, 1)

    # MP constraints
    ops.equalDOF(3, 4, 2, 3)
    ops.equalDOF(5, 6, 2, 3)

    # assign mass
    ops.mass(3, m, 0., 0. )
    ops.mass(4, m, 0., 0. )
    ops.mass(5,  m/2., 0., 0. )
    ops.mass(6,  m/2., 0., 0. )

    # define geometric transformation:
    TransfTag = 1
    ops.geomTransf('Linear', TransfTag )

    # define elements:
    # columns
    ops.element('elasticBeamColumn',1, 1, 3, Ac, E,   2.*Ic, TransfTag)
    ops.element('elasticBeamColumn',2, 3, 5, Ac, E,  Ic   ,        TransfTag)
    ops.element('elasticBeamColumn',3, 2, 4, Ac, E,   2.*Ic, TransfTag)
    ops.element('elasticBeamColumn',4, 4, 6, Ac, E,  Ic     ,      TransfTag)
    # beams
    ops.element('elasticBeamColumn',5, 3, 4, Ab, E,  Ib      ,     TransfTag)
    ops.element('elasticBeamColumn',6, 5, 6, Ab, E,  Ib       ,    TransfTag)

    # record eigenvectors
    #----------------------
    # for { k 1 } { k <= numModes } { incr k } {
    #     recorder Node -file format "modes/mode%i.out" k -nodeRange 1 6 -dof 1 2 3  "eigen k"
    # }

    # perform eigen analysis
    #-----------------------------
    lamb = ops.eigen(numModes)

    # calculate frequencies and periods of the structure
    #---------------------------------------------------
    omega = []
    f = []
    T = []
    pi = 3.141593


    for lam in lamb :
        print("labmbda = ", lam)
        omega.append(math.sqrt(lam))
        f.append(math.sqrt(lam)/(2*pi))
        T.append((2*pi)/math.sqrt(lam))


    print("periods are ", T)

    # write the output file cosisting of periods
    #--------------------------------------------
    period = "Periods.txt"
    Periods = open(period, "w")
    for t in T:
        Periods.write(repr(t)+'\n')
        
    Periods.close()


    # create display  for mode shapes
    #---------------------------------
    #                 windowTitle xLoc yLoc xPixels yPixels
    # recorder display "Mode Shape 1"  10    10     500      500     -wipe  
    # prp h h 1                                         # projection reference point (prp) defines the center of projection (viewer eye)
    # vup  0  1 0                                         # view-up vector (vup) 
    # vpn  0  0 1                                         # view-plane normal (vpn)     
    # viewWindow -200 200 -200 200                        # coordiantes of the window relative to prp  
    # display -1 5 20 
    # the 1st arg. is the tag for display mode (ex. -1 is for the first mode shape)
                                                        # the 2nd arg. is magnification factor for nodes, the 3rd arg. is magnif. factor of deformed shape
    # recorder display "Mode Shape 2" 10 510 500 500 -wipe
    # prp h h 1
    # vup  0  1 0
    # vpn  0  0 1
    # viewWindow -200 200 -200 200
    # display -2 5 20


    # Run a one step gravity load with no loading (to record eigenvectors)
    #-----------------------------------------------------------------------
    ops.integrator('LoadControl', 0.0, 1, 0.0, 0.0)

    # Convergence test
    #                     tolerance maxIter displayCode
    ops.test('EnergyIncr',    1.0e-10,    100,        0)

    # Solution algorithm
    ops.algorithm('Newton')

    # DOF numberer
    ops.numberer('RCM')

    # Constraint handler
    ops.constraints('Transformation')


    # System of equations solver
    ops.system('ProfileSPD')

    ops.analysis('Static')
    res = ops.analyze(1)
    if res < 0:
        print("Modal analysis failed")


    # get values of eigenvectors for translational DOFs
    #---------------------------------------------------
    f11 = ops.nodeEigenvector(3, 1, 1)
    f21 = ops.nodeEigenvector(5, 1, 1)
    f12 = ops.nodeEigenvector(3, 2, 1)
    f22 = ops.nodeEigenvector(5, 2, 1)
    print("eigenvector 1: ",  [f11/f21, f21/f21])
    print("eigenvector 2: ",  [f12/f22, f22/f22])

    assert abs(T[0]-0.5148773207872785)<1e-12 and abs(T[1]-0.25743866038265584)<1e-12 and abs(f11/f21-0.49999999998933464)<1e-12 and abs(f21/f21-1.0)<1e-12 and abs(f12/f22+1.0000000000213303)<1e-12 and abs(f22/f22-1.0)<1e-12
    print("==========================================")
Beispiel #10
0
def get_inelastic_response(mass,
                           k_spring,
                           f_yield,
                           motion,
                           dt,
                           xi=0.05,
                           r_post=0.0):
    """
    Run seismic analysis of a nonlinear SDOF

    :param mass: SDOF mass
    :param k_spring: spring stiffness
    :param f_yield: yield strength
    :param motion: list, acceleration values
    :param dt: float, time step of acceleration values
    :param xi: damping ratio
    :param r_post: post-yield stiffness
    :return:
    """

    opy.wipe()
    opy.model('basic', '-ndm', 2, '-ndf', 3)  # 2 dimensions, 3 dof per node

    # Establish nodes
    bot_node = 1
    top_node = 2
    opy.node(bot_node, 0., 0.)
    opy.node(top_node, 0., 0.)

    # Fix bottom node
    opy.fix(top_node, opc.FREE, opc.FIXED, opc.FIXED)
    opy.fix(bot_node, opc.FIXED, opc.FIXED, opc.FIXED)
    # Set out-of-plane DOFs to be slaved
    opy.equalDOF(1, 2, *[2, 3])

    # nodal mass (weight / g):
    opy.mass(top_node, mass, 0., 0.)

    # Define material
    bilinear_mat_tag = 1
    mat_type = "Steel01"
    mat_props = [f_yield, k_spring, r_post]
    opy.uniaxialMaterial(mat_type, bilinear_mat_tag, *mat_props)

    # Assign zero length element
    beam_tag = 1
    opy.element('zeroLength', beam_tag, bot_node, top_node, "-mat",
                bilinear_mat_tag, "-dir", 1, '-doRayleigh', 1)

    # Define the dynamic analysis
    load_tag_dynamic = 1
    pattern_tag_dynamic = 1

    values = list(-1 * motion)  # should be negative
    opy.timeSeries('Path', load_tag_dynamic, '-dt', dt, '-values', *values)
    opy.pattern('UniformExcitation', pattern_tag_dynamic, opc.X, '-accel',
                load_tag_dynamic)

    # set damping based on first eigen mode
    angular_freq2 = opy.eigen('-fullGenLapack', 1)
    if hasattr(angular_freq2, '__len__'):
        angular_freq2 = angular_freq2[0]
    angular_freq = angular_freq2**0.5
    alpha_m = 0.0
    beta_k = 2 * xi / angular_freq
    beta_k_comm = 0.0
    beta_k_init = 0.0

    opy.rayleigh(alpha_m, beta_k, beta_k_init, beta_k_comm)

    # Run the dynamic analysis

    opy.wipeAnalysis()

    opy.algorithm('Newton')
    opy.system('SparseGeneral')
    opy.numberer('RCM')
    opy.constraints('Transformation')
    opy.integrator('Newmark', 0.5, 0.25)
    opy.analysis('Transient')

    tol = 1.0e-10
    iterations = 10
    opy.test('EnergyIncr', tol, iterations, 0, 2)
    analysis_time = (len(values) - 1) * dt
    analysis_dt = 0.001
    outputs = {
        "time": [],
        "rel_disp": [],
        "rel_accel": [],
        "rel_vel": [],
        "force": []
    }

    while opy.getTime() < analysis_time:
        curr_time = opy.getTime()
        opy.analyze(1, analysis_dt)
        outputs["time"].append(curr_time)
        outputs["rel_disp"].append(opy.nodeDisp(top_node, 1))
        outputs["rel_vel"].append(opy.nodeVel(top_node, 1))
        outputs["rel_accel"].append(opy.nodeAccel(top_node, 1))
        opy.reactions()
        outputs["force"].append(
            -opy.nodeReaction(bot_node, 1))  # Negative since diff node
    opy.wipe()
    for item in outputs:
        outputs[item] = np.array(outputs[item])

    return outputs
Beispiel #11
0
def get_inelastic_response(mass,
                           k_spring,
                           f_yield,
                           motion,
                           dt,
                           xi=0.05,
                           r_post=0.0):
    """
    Run seismic analysis of a nonlinear SDOF

    :param mass: SDOF mass
    :param k_spring: spring stiffness
    :param f_yield: yield strength
    :param motion: list, acceleration values
    :param dt: float, time step of acceleration values
    :param xi: damping ratio
    :param r_post: post-yield stiffness
    :return:
    """
    osi = o3.OpenSeesInstance(ndm=2)

    # Establish nodes
    bot_node = o3.node.Node(osi, 0, 0)
    top_node = o3.node.Node(osi, 0, 0)

    # Fix bottom node
    opy.fix(top_node.tag, o3.cc.FREE, o3.cc.FIXED, o3.cc.FIXED)
    opy.fix(bot_node.tag, o3.cc.FIXED, o3.cc.FIXED, o3.cc.FIXED)
    # Set out-of-plane DOFs to be slaved
    opy.equalDOF(top_node.tag, bot_node.tag, *[o3.cc.Y, o3.cc.ROTZ])

    # nodal mass (weight / g):
    opy.mass(top_node.tag, mass, 0., 0.)

    # Define material
    bilinear_mat = o3.uniaxial_material.Steel01(osi,
                                                fy=f_yield,
                                                e0=k_spring,
                                                b=r_post)

    # Assign zero length element, # Note: pass actual node and material objects into element
    o3.element.ZeroLength(osi, [bot_node, top_node],
                          mats=[bilinear_mat],
                          dirs=[o3.cc.DOF2D_X],
                          r_flag=1)

    # Define the dynamic analysis
    load_tag_dynamic = 1
    pattern_tag_dynamic = 1

    values = list(-1 * motion)  # should be negative
    opy.timeSeries('Path', load_tag_dynamic, '-dt', dt, '-values', *values)
    opy.pattern('UniformExcitation', pattern_tag_dynamic, o3.cc.X, '-accel',
                load_tag_dynamic)

    # set damping based on first eigen mode
    angular_freq2 = opy.eigen('-fullGenLapack', 1)
    if hasattr(angular_freq2, '__len__'):
        angular_freq2 = angular_freq2[0]
    angular_freq = angular_freq2**0.5
    beta_k = 2 * xi / angular_freq
    o3.rayleigh.Rayleigh(osi,
                         alpha_m=0.0,
                         beta_k=beta_k,
                         beta_k_init=0.0,
                         beta_k_comm=0.0)

    # Run the dynamic analysis

    opy.wipeAnalysis()
    newmark_gamma = 0.5
    newmark_beta = 0.25

    o3.algorithm.Newton(osi)
    o3.constraints.Transformation(osi)
    o3.algorithm.Newton(osi)
    o3.numberer.RCM(osi)
    o3.system.SparseGeneral(osi)
    o3.integrator.Newmark(osi, newmark_gamma, newmark_beta)
    o3.analysis.Transient(osi)

    o3.test_check.EnergyIncr(osi, tol=1.0e-10, max_iter=10)
    analysis_time = (len(values) - 1) * dt
    analysis_dt = 0.001
    outputs = {
        "time": [],
        "rel_disp": [],
        "rel_accel": [],
        "rel_vel": [],
        "force": []
    }

    while opy.getTime() < analysis_time:
        curr_time = opy.getTime()
        opy.analyze(1, analysis_dt)
        outputs["time"].append(curr_time)
        outputs["rel_disp"].append(opy.nodeDisp(top_node.tag, o3.cc.X))
        outputs["rel_vel"].append(opy.nodeVel(top_node.tag, o3.cc.X))
        outputs["rel_accel"].append(opy.nodeAccel(top_node.tag, o3.cc.X))
        opy.reactions()
        outputs["force"].append(-opy.nodeReaction(
            bot_node.tag, o3.cc.X))  # Negative since diff node
    opy.wipe()
    for item in outputs:
        outputs[item] = np.array(outputs[item])

    return outputs
Beispiel #12
0
# create fixity at pile head (location of loading)
op.fix(200 + nNodePile, 0, 1, 0, 1, 0, 1)

# create fixities for remaining pile nodes
for i in range(201, 200 + nNodePile):
    op.fix(i, 0, 1, 0, 1, 0, 1)

print("Finished creating all pile node fixities...")

#----------------------------------------------------------
#  define equal dof between pile and spring nodes
#----------------------------------------------------------

for i in range(1, nNodeEmbed + 1):
    op.equalDOF(200 + i, 100 + i, 1, 3)

print("Finished creating all equal degrees of freedom...")

#----------------------------------------------------------
#  pile section
#----------------------------------------------------------
##########################################################################################################################################################################

#########################################################################################################################################################################

#----------------------------------------------------------
#  create elastic pile section
#----------------------------------------------------------

secTag = 1
    for row in range(wall_constraint_organizer.shape[0]):
        if wall_constraint_organizer[row,0]!= 0:
            end_column= np.where(wall_constraint_organizer[row,:] == 0)[0][0]
            for column in range(end_column):
                wall_constraint_data[row,column]= np.where(original_wall_data_arr[:,2] == wall_constraint_organizer[row,column])[0][0]+1

    
    check= np.zeros((1000,2))
    check_row= 0
    
    for row in range(wall_constraint_data.shape[0]):
        if wall_constraint_data[row,0]!= 0:
            end_column= np.where(wall_constraint_data[row,:] == 0)[0][0]
            for column in range(1,end_column):
                for floor in range(num_story):
                    ops.equalDOF(int(wall_constraint_data[row,0]+1000*(floor+2)), int(wall_constraint_data[row,column]+1000*(floor+2)),3,4,5)
                    check[check_row,0]= wall_constraint_data[row,0]+1000*(floor+2)
                    check[check_row,1]= wall_constraint_data[row,column]+1000*(floor+2)
                    check_row= check_row+1
                        
    # =============================================================================
    #     Define Coordinate Transformation
    # =============================================================================
    ops.geomTransf('Linear', 1, 1, 0, 0)
    
    # =============================================================================
    #     Define Elements
    # =============================================================================
    
    #in local coordinate system: 0.J 1.Iz 2.Iy
    moment_of_inertia= np.zeros((wall.shape[0],3))