Beispiel #1
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
if ot.LogNormal().__class__.__name__ == 'Bernoulli':
    distribution = ot.Bernoulli(0.7)
elif ot.LogNormal().__class__.__name__ == 'Binomial':
    distribution = ot.Binomial(5, 0.2)
elif ot.LogNormal().__class__.__name__ == 'ComposedDistribution':
    copula = ot.IndependentCopula(2)
    marginals = [ot.Uniform(1.0, 2.0), ot.Normal(2.0, 3.0)]
    distribution = ot.ComposedDistribution(marginals, copula)
elif ot.LogNormal().__class__.__name__ == 'CumulativeDistributionNetwork':
    coll = [ot.Normal(2),ot.Dirichlet([0.5, 1.0, 1.5])]
    distribution = ot.CumulativeDistributionNetwork(coll, ot.BipartiteGraph([[0,1], [0,1]]))
elif ot.LogNormal().__class__.__name__ == 'Histogram':
    distribution = ot.Histogram([-1.0, 0.5, 1.0, 2.0], [0.45, 0.4, 0.15])
elif ot.LogNormal().__class__.__name__ == 'KernelMixture':
    kernel = ot.Uniform()
    sample = ot.Normal().getSample(5)
    bandwith = [1.0]
    distribution = ot.KernelMixture(kernel, bandwith, sample)
elif ot.LogNormal().__class__.__name__ == 'MaximumDistribution':
    coll = [ot.Uniform(2.5, 3.5), ot.LogUniform(1.0, 1.2), ot.Triangular(2.0, 3.0, 4.0)]
    distribution = ot.MaximumDistribution(coll)
elif ot.LogNormal().__class__.__name__ == 'Multinomial':
    distribution = ot.Multinomial(5, [0.2])
elif ot.LogNormal().__class__.__name__ == 'RandomMixture':
    coll = [ot.Triangular(0.0, 1.0, 5.0), ot.Uniform(-2.0, 2.0)]
    weights = [0.8, 0.2]
    cst = 3.0
    distribution = ot.RandomMixture(coll, weights, cst)
Beispiel #2
0
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()


# Instantiate one distribution object
distribution = ot.DiscreteCompoundDistribution(
    ot.Bernoulli(0.5), ot.Poisson(20.0))
upper_bound = int(distribution.getRange().getUpperBound()[0])
print("Upper bound : {!r}".format(upper_bound))

# Compare with mathematically equal distribution
poisson_distribution = ot.Poisson(10.0)

for i in range(upper_bound):
    ott.assert_almost_equal(distribution.computePDF(
        [i]), poisson_distribution.computePDF([i]))

print("Distribution ", repr(distribution))
print("Distribution ", distribution)

# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())

# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())

# Test for realization of distribution
oneRealization = distribution.getRealization()
    res = term1 / (term1 + term0)
    # output must be a 1d list or array in order to create a PythonFunction
    return res.reshape(-1)


nor0posterior = ot.PythonFunction(2 + N, 2, nor0post)
nor1posterior = ot.PythonFunction(2 + N, 2, nor1post)
zposterior = ot.PythonFunction(2 + N, N, zpost)

# We can now construct the Gibbs algorithm
initialState = [0.0] * (N + 2)
sampler0 = ot.RandomVectorMetropolisHastings(ot.RandomVector(ot.Normal()),
                                             initialState, [0], nor0posterior)
sampler1 = ot.RandomVectorMetropolisHastings(ot.RandomVector(ot.Normal()),
                                             initialState, [1], nor1posterior)
big_bernoulli = ot.ComposedDistribution([ot.Bernoulli()] * N)
sampler2 = ot.RandomVectorMetropolisHastings(ot.RandomVector(big_bernoulli),
                                             initialState, range(2, N + 2),
                                             zposterior)
gibbs = ot.Gibbs([sampler0, sampler1, sampler2])

# Run the Gibbs algorithm
s = gibbs.getSample(10000)

# Extract the relevant marginals: the first (:math:`mu_0`) and the second (:math:`\mu_1`).
posterior_sample = s[:, 0:2]
mean = posterior_sample.computeMean()
stddev = posterior_sample.computeStandardDeviation()
print(mean, stddev)
ott.assert_almost_equal(mean, [-0.0788226, 2.80322])
ott.assert_almost_equal(stddev, [0.0306272, 0.0591087])
Beispiel #4
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
if (ot.Bernoulli().__class__.__name__ == 'ComposedDistribution'):
    correlation = ot.CorrelationMatrix(2)
    correlation[1, 0] = 0.25
    aCopula = ot.NormalCopula(correlation)
    marginals = [ot.Normal(1.0, 2.0), ot.Normal(2.0, 3.0)]
    distribution = ot.ComposedDistribution(marginals, aCopula)
elif (ot.Bernoulli().__class__.__name__ == 'CumulativeDistributionNetwork'):
    distribution = ot.CumulativeDistributionNetwork(
        [ot.Normal(2), ot.Dirichlet([0.5, 1.0, 1.5])],
        ot.BipartiteGraph([[0, 1], [0, 1]]))
else:
    distribution = ot.Bernoulli()
dimension = distribution.getDimension()
if dimension <= 2:
    if distribution.getDimension() == 1:
        distribution.setDescription(['$x$'])
        pdf_graph = distribution.drawPDF()
        cdf_graph = distribution.drawCDF()
        fig = plt.figure(figsize=(10, 4))
        plt.suptitle(str(distribution))
        pdf_axis = fig.add_subplot(121)
        cdf_axis = fig.add_subplot(122)
        View(pdf_graph, figure=fig, axes=[pdf_axis], add_legend=False)
        View(cdf_graph, figure=fig, axes=[cdf_axis], add_legend=False)
    else:
        distribution.setDescription(['$x_1$', '$x_2$'])
        pdf_graph = distribution.drawPDF()
        fig = plt.figure(figsize=(10, 5))
Beispiel #5
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
if ot.Bernoulli().__class__.__name__ == 'ComposedDistribution':
    correlation = ot.CorrelationMatrix(2)
    correlation[1, 0] = 0.25
    aCopula = ot.NormalCopula(correlation)
    marginals = [ot.Normal(1.0, 2.0), ot.Normal(2.0, 3.0)]
    distribution = ot.ComposedDistribution(marginals, aCopula)
elif ot.Bernoulli().__class__.__name__ == 'CumulativeDistributionNetwork':
    distribution = ot.CumulativeDistributionNetwork(
        [ot.Normal(2), ot.Dirichlet([0.5, 1.0, 1.5])],
        ot.BipartiteGraph([[0, 1], [0, 1]]))
elif ot.Bernoulli().__class__.__name__ == 'Histogram':
    distribution = ot.Histogram([-1.0, 0.5, 1.0, 2.0], [0.45, 0.4, 0.15])
else:
    distribution = ot.Bernoulli()
dimension = distribution.getDimension()
if dimension == 1:
    distribution.setDescription(['$x$'])
    pdf_graph = distribution.drawPDF()
    cdf_graph = distribution.drawCDF()
    fig = plt.figure(figsize=(10, 4))
    plt.suptitle(str(distribution))
    pdf_axis = fig.add_subplot(121)
    cdf_axis = fig.add_subplot(122)
    View(pdf_graph, figure=fig, axes=[pdf_axis], add_legend=False)
    View(cdf_graph, figure=fig, axes=[cdf_axis], add_legend=False)
elif dimension == 2:
    distribution.setDescription(['$x_1$', '$x_2$'])
    pdf_graph = distribution.drawPDF()
                                                                1], [70, 1],
                  [72, 0], [73, 0], [75, 0], [75, 1], [76, 0], [76, 0],
                  [78, 0], [79, 0], [81, 0]])

data.setDescription(['Temp. (°F)', 'Failure'])
print(data)

fun = ot.SymbolicFunction(
    ["alpha", "beta", "x"],
    ["exp(alpha + beta * x) / (1 + exp(alpha + beta * x))"])
linkFunction = ot.ParametricFunction(fun, [2], [0.0])
instrumental = ot.Normal([0.0] * 2, [0.5, 0.05], ot.IdentityMatrix(2))

target = ot.ComposedDistribution([ot.Uniform(-100.0, 100.0)] * 2)
rwmh = ot.RandomWalkMetropolisHastings(target, [0.0] * 2, instrumental)
conditional = ot.Bernoulli()
observations = data[:, 1]
covariates = data[:, 0]
rwmh.setLikelihood(conditional, observations, linkFunction, covariates)

# try to generate a sample
sample = rwmh.getSample(10000)
mu = sample.computeMean()
sigma = sample.computeStandardDeviation()
print('mu=', mu, 'sigma=', sigma)
ott.assert_almost_equal(mu, [14.8747, -0.230384])
ott.assert_almost_equal(sigma, [7.3662, 0.108103])

print('acceptance rate=', rwmh.getAcceptanceRate())
ott.assert_almost_equal(rwmh.getAcceptanceRate(), 0.1999)
        "round": 2,
    },
    "nb_provider_rating": {
        "marg": ot.Geometric(0.001),  # mean is 1000
        "corr": 0.08,  # Weak positive correlation
        "bounds": None,
        "round": 0,  # Already an integer (casted as double)
    },
    "avg_provider_rating": {
        "marg": ot.Triangular(2.5, 4.0, 4.8),  # mode is 4.0
        "corr": 0.01,  # Weak positive correlation
        "bounds": None,
        "round": 2,
    },
    "has_multipayment": {
        "marg": ot.Bernoulli(0.4),  # assume 40% of yes
        "corr": 0.0,  # Assume no correlation
        "bounds": None,
        "round": 0,
    },
    "conversion_rate": {
        "marg": ot.Exponential(15.0, 0.05),  # mean is ~0.12 (0.05 + 1/15)
        "corr": None,  # Corr not relevant for conversion_rate, because
        # it is the target variable.
        "bounds": None,
        "round": 4,
    },
}

CORR_CONF_TRAIN = {  # Conf file for adding correlations between variables
    ("price", "ratio_shipping"): -0.15,  # The more expensive, the less costly
Beispiel #8
0
import smartGrid as sg
import uncertain.boolean as ubool
import openturns as ot

if __name__ == '__main__':

    fuse1 = sg.Fuse(ubool.UBoolean(ot.Bernoulli(1)))
    fuse2 = sg.Fuse(ubool.UBoolean(ot.Bernoulli(1)))
    fuse3 = sg.Fuse(ubool.UBoolean(ot.Bernoulli(1)))

    cable1 = sg.Cable(ot.Normal(10, 0.8))
    fuse1.cable = cable1

    cable2 = sg.Cable(ot.Normal(10, 0.8))
    fuse2.cable = cable2

    cable3 = sg.Cable(ot.Normal(10, 0.8))
    fuse3.cable = cable3

    substation = sg.Substation(fuse1, fuse2, fuse3)
    sg.compute_load_no_cable(substation)
    print(substation)




Beispiel #9
0
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
if ot.Bernoulli().__class__.__name__ == 'Bernoulli':
    distribution = ot.Bernoulli(0.7)
elif ot.Bernoulli().__class__.__name__ == 'Binomial':
    distribution = ot.Binomial(5, 0.2)
elif ot.Bernoulli().__class__.__name__ == 'ComposedDistribution':
    copula = ot.IndependentCopula(2)
    marginals = [ot.Uniform(1.0, 2.0), ot.Normal(2.0, 3.0)]
    distribution = ot.ComposedDistribution(marginals, copula)
elif ot.Bernoulli().__class__.__name__ == 'CumulativeDistributionNetwork':
    coll = [ot.Normal(2), ot.Dirichlet([0.5, 1.0, 1.5])]
    distribution = ot.CumulativeDistributionNetwork(
        coll, ot.BipartiteGraph([[0, 1], [0, 1]]))
elif ot.Bernoulli().__class__.__name__ == 'Histogram':
    distribution = ot.Histogram([-1.0, 0.5, 1.0, 2.0], [0.45, 0.4, 0.15])
elif ot.Bernoulli().__class__.__name__ == 'KernelMixture':
    kernel = ot.Uniform()
    sample = ot.Normal().getSample(5)
    bandwith = [1.0]
    distribution = ot.KernelMixture(kernel, bandwith, sample)
elif ot.Bernoulli().__class__.__name__ == 'MaximumDistribution':
    coll = [
        ot.Uniform(2.5, 3.5),
        ot.LogUniform(1.0, 1.2),
        ot.Triangular(2.0, 3.0, 4.0)
    ]
    distribution = ot.MaximumDistribution(coll)
elif ot.Bernoulli().__class__.__name__ == 'Multinomial':
    distribution = ot.Multinomial(5, [0.2])
Beispiel #10
0
 def __init__(self, confidence=ot.Bernoulli()):
     self.confidence = confidence
Beispiel #11
0
 def not_op(self):
     return UBoolean(ot.Bernoulli(1 - self.confidence.getP()))
Beispiel #12
0
 def __or__(self, other):
     if isinstance(other, UBoolean):
         return UBoolean(
             ot.Bernoulli(self.confidence.getP() * other.confidence.getP()))
     return NotImplemented
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()

# Instantiate one distribution object
distribution = ot.DiscreteCompoundDistribution(ot.Bernoulli(0.5),
                                               ot.Poisson(20.0))
upper_bound = int(distribution.getRange().getUpperBound()[0])
print("Upper bound : {!r}".format(upper_bound))

# Compare with mathematically equal distribution
poisson_distribution = ot.Poisson(10.0)

for i in range(upper_bound):
    ott.assert_almost_equal(distribution.computePDF([i]),
                            poisson_distribution.computePDF([i]))

print("Distribution ", repr(distribution))
print("Distribution ", distribution)

# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())

# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())

# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", repr(oneRealization))
Beispiel #14
0
 def __init__(self, cable=None, is_closed=ubool.UBoolean(ot.Bernoulli(1))):
     self.cable = cable
     self.isClosed = is_closed