Beispiel #1
0
    def _buildChaosAlgo(self, inputSample, outputSample):
        """
        Build the functional chaos algorithm without running it.
        """
        if self._distribution is None:
            # create default distribution : Uniform between min and max of the
            # input sample
            inputSample = ot.NumericalSample(inputSample)
            inputMin = inputSample.getMin()
            inputMin[0] = np.min(self._defectSizes)
            inputMax = inputSample.getMax()
            inputMax[0] = np.max(self._defectSizes)
            marginals = [
                ot.Uniform(inputMin[i], inputMax[i]) for i in range(self._dim)
            ]
            self._distribution = ot.ComposedDistribution(marginals)

        # put description of the inputSample into decription of the distribution
        self._distribution.setDescription(inputSample.getDescription())

        if self._adaptiveStrategy is None:
            # Create the adaptive strategy : default is fixed strategy of degree 5
            # with linear enumerate function
            polyCol = [0.] * self._dim
            for i in range(self._dim):
                polyCol[i] = ot.StandardDistributionPolynomialFactory(
                    self._distribution.getMarginal(i))

            enumerateFunction = ot.EnumerateFunction(self._dim)
            multivariateBasis = ot.OrthogonalProductPolynomialFactory(
                polyCol, enumerateFunction)
            # default degree is 3 (in __init__)
            indexMax = enumerateFunction.getStrataCumulatedCardinal(
                self._degree)
            self._adaptiveStrategy = ot.FixedStrategy(multivariateBasis,
                                                      indexMax)

        if self._projectionStrategy is None:
            # sparse polynomial chaos
            basis_sequence_factory = ot.LAR()
            fitting_algorithm = ot.KFold()
            approximation_algorithm = ot.LeastSquaresMetaModelSelectionFactory(
                basis_sequence_factory, fitting_algorithm)
            self._projectionStrategy = ot.LeastSquaresStrategy(
                inputSample, outputSample, approximation_algorithm)

        return ot.FunctionalChaosAlgorithm(inputSample, outputSample, \
                self._distribution, self._adaptiveStrategy, self._projectionStrategy)
# Add the trend to the initial process
myYProcess = ot.CompositeProcess(fTemp, myXProcess)

# Get a field from myYtProcess
myYField = myYProcess.getRealization()

# %%
# CASE 1 : we estimate the trend from the field

# Define the regression stategy using the LAR method
myBasisSequenceFactory = ot.LARS()

# Define the fitting algorithm using the
# Corrected Leave One Out or KFold algorithms
myFittingAlgorithm = ot.CorrectedLeaveOneOut()
myFittingAlgorithm_2 = ot.KFold()

# Define the basis function
# For example composed of 5 functions
myFunctionBasis = list(map(lambda fst: ot.SymbolicFunction(
    ['t', 's'], [fst]), ['1', 't', 's', 't^2', 's^2']))

# Define the trend function factory algorithm
myTrendFactory = ot.TrendFactory(myBasisSequenceFactory, myFittingAlgorithm)

# Create the trend transformation  of type TrendTransform
myTrendTransform = myTrendFactory.build(myYField, ot.Basis(myFunctionBasis))

# Check the estimated trend function
print('Trend function = ', myTrendTransform)
Beispiel #3
0
print('initial design computed')

# Response of the model
print('sampling size = ', N)
output_database = ishigami_model(input_database)

# Learning input/output
# Usual chaos meta model
enumerate_function = ot.HyperbolicAnisotropicEnumerateFunction(dimension)
orthogonal_basis = ot.OrthogonalProductPolynomialFactory(
    dimension * [ot.LegendreFactory()], enumerate_function)
basis_size = 100
# Initial chaos algorithm
adaptive_strategy = ot.FixedStrategy(orthogonal_basis, basis_size)
# ProjectionStrategy ==> Sparse
fitting_algorithm = ot.KFold()
approximation_algorithm = ot.LeastSquaresMetaModelSelectionFactory(
    ot.LARS(), fitting_algorithm)
projection_strategy = ot.LeastSquaresStrategy(input_database, output_database,
                                              approximation_algorithm)
print('Surrogate model...')
distribution_ishigami = ot.ComposedDistribution(dimension *
                                                [ot.Uniform(-pi, pi)])
algo_pc = ot.FunctionalChaosAlgorithm(input_database, output_database,
                                      distribution_ishigami, adaptive_strategy,
                                      projection_strategy)
algo_pc.run()
chaos_result = algo_pc.getResult()
print('Surrogate model computed')

# Validation
# 1) SPC algorithm
# Create the orthogonal basis
polynomialCollection = [ot.LegendreFactory()] * dimension

enumerateFunction = ot.LinearEnumerateFunction(dimension)
productBasis = ot.OrthogonalProductPolynomialFactory(
    polynomialCollection, enumerateFunction)

# Create the adaptive strategy
degree = 8
basisSize = enumerateFunction.getStrataCumulatedCardinal(degree)
adaptiveStrategy = ot.FixedStrategy(productBasis, basisSize)

# Select the fitting algorithm
fittingAlgorithm = ot.KFold()
leastSquaresFactory = ot.LeastSquaresMetaModelSelectionFactory(
    ot.LARS(), fittingAlgorithm)

# Projection strategy
projectionStrategy = ot.LeastSquaresStrategy(
    inputSample, outputSample, leastSquaresFactory)

algo = ot.FunctionalChaosAlgorithm(
    inputSample, outputSample, distribution, adaptiveStrategy, projectionStrategy)
# Reinitialize the RandomGenerator to see the effect of the sampling
# method only
ot.RandomGenerator.SetSeed(0)
algo.run()

# Get the results
Beispiel #5
0
    def fit(self, X, y, **fit_params):
        """Fit PC regression model.

        Parameters
        ----------
        X : array-like, shape = (n_samples, n_features)
            Training data.
        y : array-like, shape = (n_samples, [n_output_dims])
            Target values.

        Returns
        -------
        self : returns an instance of self.

        """
        if len(X) == 0:
            raise ValueError(
                "Can not perform chaos expansion with empty sample")
        # check data type is accurate
        if (len(np.shape(X)) != 2):
            raise ValueError("X has incorrect shape.")
        input_dimension = len(X[1])
        if (len(np.shape(y)) != 2):
            raise ValueError("y has incorrect shape.")
        if self.distribution is None:
            self.distribution = ot.MetaModelAlgorithm.BuildDistribution(X)
        if self.enumeratef == 'linear':
            enumerateFunction = ot.LinearEnumerateFunction(input_dimension)
        elif self.enumeratef == 'hyperbolic':
            enumerateFunction = ot.HyperbolicAnisotropicEnumerateFunction(
                input_dimension, self.q)
        else:
            raise ValueError('enumeratef should be "linear" or "hyperbolic"')
        polynomials = [
            ot.StandardDistributionPolynomialFactory(
                self.distribution.getMarginal(i))
            for i in range(input_dimension)
        ]
        productBasis = ot.OrthogonalProductPolynomialFactory(
            polynomials, enumerateFunction)
        adaptiveStrategy = ot.FixedStrategy(
            productBasis,
            enumerateFunction.getStrataCumulatedCardinal(self.degree))
        if self.sparse:
            # Filter according to the sparse_fitting_algorithm key
            if self.sparse_fitting_algorithm == "cloo":
                fitting_algorithm = ot.CorrectedLeaveOneOut()
            else:
                fitting_algorithm = ot.KFold()
            # Define the correspondinding projection strategy
            projectionStrategy = ot.LeastSquaresStrategy(
                ot.LeastSquaresMetaModelSelectionFactory(
                    ot.LARS(), fitting_algorithm))
        else:
            projectionStrategy = ot.LeastSquaresStrategy(X, y)
        algo = ot.FunctionalChaosAlgorithm(X, y, self.distribution,
                                           adaptiveStrategy,
                                           projectionStrategy)
        algo.run()
        self.result_ = algo.getResult()
        output_dimension = self.result_.getMetaModel().getOutputDimension()

        # sensitivity
        si = ot.FunctionalChaosSobolIndices(self.result_)
        if output_dimension == 1:
            self.feature_importances_ = [
                si.getSobolIndex(i) for i in range(input_dimension)
            ]
        else:
            self.feature_importances_ = [[0.0] * input_dimension
                                         ] * output_dimension
            for k in range(output_dimension):
                for i in range(input_dimension):
                    self.feature_importances_[k][i] = si.getSobolIndex(i, k)
        self.feature_importances_ = np.array(self.feature_importances_)
        return self