Beispiel #1
0
def test_max_pool_kernel_shape3x3():
    rt = get_runtime()

    # array([[[[ 0.5,  1.5,  2.5,  3.5],
    #          [ 4.5,  5.5,  6.5,  7.5],
    #          [ 8.5,  9.5, 10.5, 11.5],
    #          [12.5, 13.5, 14.5, 15.5]]]], dtype=float32)
    data = np.arange(0.5, 16, dtype=np.float32).reshape((1, 1, 4, 4))
    strides = [1, 1]
    dilations = [1, 1]
    pads_begin = [0, 0]
    pads_end = [0, 0]
    kernel_shape = [3, 3]
    rounding_type = "floor"
    auto_pad = None
    index_et = "i32"

    data_node = ov.parameter(data.shape, name="A", dtype=np.float32)
    maxpool_node = ov.max_pool(
        data_node,
        strides,
        dilations,
        pads_begin,
        pads_end,
        kernel_shape,
        rounding_type,
        auto_pad,
        index_et,
    )
    comp = rt.computation(maxpool_node, data_node)
    result = comp(data)

    expected = np.array([[[[10.5, 11.5], [14.5, 15.5]]]], dtype=np.float32)
    assert np.allclose(result[0], expected)
Beispiel #2
0
def test_max_pool_non_zero_pads():
    rt = get_runtime()

    # array([[[[ 0.5,  1.5,  2.5,  3.5],
    #          [ 4.5,  5.5,  6.5,  7.5],
    #          [ 8.5,  9.5, 10.5, 11.5],
    #          [12.5, 13.5, 14.5, 15.5]]]], dtype=float32)
    data = np.arange(0.5, 16, dtype=np.float32).reshape((1, 1, 4, 4))
    strides = [1, 1]
    dilations = [1, 1]
    pads_begin = [1, 1]
    pads_end = [1, 1]
    #  0   0  ,  0  ,  0  ,  0,    0
    #  0 [ 0.5,  1.5,  2.5,  3.5], 0,
    #  0 [ 4.5,  5.5,  6.5,  7.5], 0,
    #  0 [ 8.5,  9.5, 10.5, 11.5], 0,
    #  0 [12.5, 13.5, 14.5, 15.5], 0
    #  0   0  ,  0  ,  0  ,  0,    0
    kernel_shape = [2, 2]
    rounding_type = "floor"
    auto_pad = None
    index_et = "i32"

    data_node = ov.parameter(data.shape, name="A", dtype=np.float32)
    maxpool_node = ov.max_pool(
        data_node,
        strides,
        dilations,
        pads_begin,
        pads_end,
        kernel_shape,
        rounding_type,
        auto_pad,
        index_et,
    )
    comp = rt.computation(maxpool_node, data_node)
    result = comp(data)

    expected = np.array(
        [[[
            [0.5, 1.5, 2.5, 3.5, 3.5],
            [4.5, 5.5, 6.5, 7.5, 7.5],
            [8.5, 9.5, 10.5, 11.5, 11.5],
            [12.5, 13.5, 14.5, 15.5, 15.5],
            [12.5, 13.5, 14.5, 15.5, 15.5],
        ]]],
        dtype=np.float32,
    )
    expected_idx = np.array(
        [[[
            [0, 1, 2, 3, 3],
            [4, 5, 6, 7, 7],
            [8, 9, 10, 11, 11],
            [12, 13, 14, 15, 15],
            [12, 13, 14, 15, 15],
        ]]],
        dtype=np.int32,
    )
    assert np.allclose(result[0], expected)
    assert np.allclose(result[1], expected_idx)
Beispiel #3
0
def test_max_pool():
    # test 1d
    element_type = Type.f32
    shape = Shape([1, 1, 10])
    A = Parameter(element_type, shape)
    parameter_list = [A]

    input_arr = np.arange(10, dtype=np.float32).reshape([1, 1, 10])
    window_shape = [3]

    strides = [1] * len(window_shape)
    dilations = [1] * len(window_shape)
    pads_begin = [0] * len(window_shape)
    pads_end = [0] * len(window_shape)
    rounding_type = "floor"
    auto_pad = "explicit"
    idx_elem_type = "i32"

    model = ov.max_pool(
        A,
        strides,
        dilations,
        pads_begin,
        pads_end,
        window_shape,
        rounding_type,
        auto_pad,
        idx_elem_type,
    )
    function = Function([model], parameter_list, "test")

    runtime = get_runtime()
    computation = runtime.computation(function, *parameter_list)
    result = computation(input_arr)[0]

    expected = (np.arange(8) + 2).reshape(1, 1, 8)
    assert np.allclose(result, expected)

    # test 1d with strides
    strides = [2]
    pads_begin = [0] * len(window_shape)
    pads_end = [0] * len(window_shape)

    model = ov.max_pool(
        A,
        strides,
        dilations,
        pads_begin,
        pads_end,
        window_shape,
        rounding_type,
        auto_pad,
        idx_elem_type,
    )
    function = Function([model], parameter_list, "test")

    size = 4
    computation = runtime.computation(function, *parameter_list)
    result = computation(input_arr)[0]

    expected = ((np.arange(size) + 1) * 2).reshape(1, 1, size)
    assert np.allclose(result, expected)

    # test 2d
    element_type = Type.f32
    shape = Shape([1, 1, 10, 10])
    A = Parameter(element_type, shape)
    parameter_list = [A]

    input_arr = np.arange(100, dtype=np.float32).reshape(1, 1, 10, 10)
    window_shape = [3, 3]

    strides = [1, 1]
    dilations = [1, 1]
    pads_begin = [0, 0]
    pads_end = [0, 0]

    model = ov.max_pool(
        A,
        strides,
        dilations,
        pads_begin,
        pads_end,
        window_shape,
        rounding_type,
        auto_pad,
        idx_elem_type,
    )
    function = Function([model], parameter_list, "test")

    computation = runtime.computation(function, *parameter_list)
    result = computation(input_arr)[0]

    expected = ((np.arange(100).reshape(10, 10))[2:, 2:]).reshape(1, 1, 8, 8)
    assert np.allclose(result, expected)

    # test 2d with strides
    strides = [2, 2]
    dilations = [1, 1]
    pads_begin = [0, 0]
    pads_end = [0, 0]

    model = ov.max_pool(
        A,
        strides,
        dilations,
        pads_begin,
        pads_end,
        window_shape,
        rounding_type,
        auto_pad,
        idx_elem_type,
    )
    function = Function([model], parameter_list, "test")
    computation = runtime.computation(function, *parameter_list)
    result = computation(input_arr)[0]

    size = 4
    expected = ((np.arange(100).reshape(10, 10))[2::2, 2::2]).reshape(1, 1, size, size)
    assert np.allclose(result, expected)