Beispiel #1
0
    def infer(node: Node):
        in_shape = node.in_port(0).data.get_shape()
        if in_shape.size != 4:
            raise Error('TensorFlow DepthToSpace operation is supported for 4D \'NHWC\' input layout only. '
                        'Current input shape is \'{}\''.format(in_shape))

        layout = node.graph.graph['layout']

        N = in_shape[get_batch_dim(layout, 4)]
        H = in_shape[get_height_dim(layout, 4)]
        W = in_shape[get_width_dim(layout, 4)]
        C = in_shape[get_features_dim(layout, 4)]

        block_size = node['block_size']
        if C is not dynamic_dimension and C % (block_size ** 2):
            raise Error('Feature dimensions of input tensor of DepthToSpace operation have to be divisible by square '
                        'of DepthToSpace \'block_size\' parameter. Input tensor shape = {}. Feature dimension = {}. '
                        'block_size = {}'.format(in_shape, C, block_size))

        out_shape = shape_for_layout(layout,
                                     batch=N,
                                     features=C // (block_size * block_size),
                                     height=H * block_size,
                                     width=W * block_size)

        if is_fully_defined(in_shape) and is_fully_defined(out_shape) and np.prod(in_shape) != np.prod(out_shape):
            raise Error('Number of input elements "{}" is not equal to number of output elements "" for node "{}"'
                        ''.format(in_shape, out_shape, node.soft_get('name', node.id)))
        node.out_port(0).data.set_shape(out_shape)
Beispiel #2
0
    def infer(node: Node):
        in_shape = node.in_node().shape
        if in_shape.size != 4:
            raise Error('TensorFlow SpaceToDepth operation is supported for 4D \'NHWC\' input layout only. '
                        'Current input shape is \'{}\''.format(in_shape))

        layout = node.graph.graph['layout']
        N = in_shape[get_batch_dim(layout, 4)]
        H = in_shape[get_height_dim(layout, 4)]
        W = in_shape[get_width_dim(layout, 4)]
        C = in_shape[get_features_dim(layout, 4)]

        block_size = node['block_size']
        if (H is not dynamic_dimension and H % block_size) or (W is not dynamic_dimension and W % block_size):
            raise Error('Spatial dimensions of input tensor of SpaceToDepth operation have to be divisible by '
                        'SpaceToDepth \'block_size\' parameter. Input tensor shape = {}. Spatial dimensions = {},{}. '
                        'block_size = {}'.format(in_shape, H, W, block_size))

        out_shape = shape_for_layout(layout,
                                     batch=N,
                                     features=C * (block_size ** 2),
                                     height=H // block_size,
                                     width=W // block_size)

        node.out_port(0).data.set_shape(out_shape)
Beispiel #3
0
    def regionyolo_infer(node: Node):
        input_shape = node.in_port(0).data.get_shape()
        axis = get_canonical_axis_index(input_shape, node.axis)
        end_axis = get_canonical_axis_index(input_shape, node.end_axis)
        node.axis = axis
        node.end_axis = end_axis
        if node.do_softmax:
            dims_to_flatten = input_shape[axis:end_axis + 1]
            if is_fully_defined(dims_to_flatten):
                flat_dim = np.ma.prod(dims_to_flatten)
            else:
                flat_dim = dynamic_dimension_value
            node.out_port(0).data.set_shape(
                [*input_shape[:axis], flat_dim, *input_shape[end_axis + 1:]])
        else:
            layout = node.graph.graph['layout']
            assert len(layout) == 4

            node.out_port(0).data.set_shape(
                shape_for_layout(layout,
                                 batch=input_shape[get_batch_dim(layout, 4)],
                                 features=(node.classes + node.coords + 1) *
                                 len(node.mask),
                                 height=input_shape[get_height_dim(layout, 4)],
                                 width=input_shape[get_width_dim(layout, 4)]))
    def priorbox_clustered_infer(node: Node):
        layout = node.graph.graph['layout']
        data_shape = node.in_node(0).shape
        num_ratios = len(node.width)

        if node.has_and_set('V10_infer'):
            assert node.in_node(0).value is not None
            node.out_port(0).data.set_shape([2, np.prod(node.in_node(0).value) * num_ratios * 4])
        else:
            res_prod = data_shape[get_height_dim(layout, 4)] * data_shape[get_width_dim(layout, 4)] * num_ratios * 4
            node.out_port(0).data.set_shape([1, 2, res_prod])
Beispiel #5
0
    def upsample_infer(node: Node):
        node_name = node.soft_get('name', node.id)
        layout = node.graph.graph['layout']
        assert len(
            layout
        ) == 4, 'Input tensor rank must be equal to 4 for node "{}"'.format(
            node_name)

        input_shape = node.in_port(0).data.get_shape()

        if len(node.in_nodes()) == 1:
            in_height = input_shape[get_height_dim(layout, 4)]
            in_width = input_shape[get_width_dim(layout, 4)]
            assert node.has('width_scale') is not None and node.has(
                'height_scale') is not None
            if in_height is not dynamic_dimension:
                out_height = math.floor(in_height * node.height_scale)
            else:
                out_height = dynamic_dimension
            if in_width is not dynamic_dimension:
                out_width = math.floor(in_width * node.width_scale)
            else:
                out_width = dynamic_dimension
            node.out_port(0).data.set_shape(
                shape_for_layout(layout,
                                 batch=input_shape[get_batch_dim(layout, 4)],
                                 features=input_shape[get_features_dim(
                                     layout, 4)],
                                 height=out_height,
                                 width=out_width))
        else:
            scales = node.in_port(1).data.get_value()
            assert scales is not None, 'The input with scales for node "{}" is not constant'.format(
                node_name)
            eps = 1e-5  # This is to make rounding in case of very close number to round to closest instead of down
            # generic output shape calculation to support 5D input shape case
            output_shape = shape_array(
                [dynamic_dimension for _ in range(len(input_shape))])
            for idx in range(len(output_shape)):
                if input_shape[idx] is not dynamic_dimension:
                    output_shape[idx] = int(
                        (input_shape[idx] + eps) * scales[idx])
                else:
                    output_shape[idx] = dynamic_dimension_value
            node.out_port(0).data.set_shape(output_shape)
Beispiel #6
0
    def priorbox_infer(node: Node):
        layout = node.graph.graph['layout']
        data_shape = node.in_node(0).shape

        # calculate all different aspect_ratios (the first one is always 1)
        # in aspect_ratio 1/x values will be added for all except 1 if flip is True
        ar_seen = [1.0]
        ar_seen.extend(node.aspect_ratio.copy())
        if node.flip:
            for s in node.aspect_ratio:
                ar_seen.append(1.0 / s)

        ar_seen = np.unique(mo_array(ar_seen).round(decimals=6))

        num_ratios = 0
        if len(node.min_size) > 0:
            num_ratios = len(ar_seen) * len(node.min_size)

        if node.has_valid('fixed_size') and len(node.fixed_size) > 0:
            num_ratios = len(ar_seen) * len(node.fixed_size)

        if node.has_valid('density') and len(node.density) > 0:
            for d in node.density:
                if node.has_valid('fixed_ratio') and len(node.fixed_ratio) > 0:
                    num_ratios = num_ratios + len(
                        node.fixed_ratio) * (pow(d, 2) - 1)
                else:
                    num_ratios = num_ratios + len(ar_seen) * (pow(d, 2) - 1)

        num_ratios = num_ratios + len(node.max_size)

        if node.has_and_set('V10_infer'):
            assert node.in_node(0).value is not None
            node.out_port(0).data.set_shape(
                [2, np.prod(node.in_node(0).value) * num_ratios * 4])
        else:
            res_prod = data_shape[get_height_dim(
                layout, 4)] * data_shape[get_width_dim(layout,
                                                       4)] * num_ratios * 4
            node.out_port(0).data.set_shape([1, 2, res_prod])
Beispiel #7
0
    def replace_pattern(self, graph: Graph, match: Dict[str, Node]):
        log.debug('UpsampleToResample is triggered')
        upsample = match['upsample']
        upsample_name = upsample.soft_get('name', upsample.id)
        input_shape = upsample.in_port(0).data.get_shape()
        input_shape_rank = len(input_shape)
        if input_shape_rank not in [4, 5]:
            log.warning('The input shape is not 4D or 5D for op {}'.format(
                upsample.soft_get('name')))
            return

        depth_scale = None
        layout = graph.graph['layout']

        if len(upsample.in_nodes()) == 2:
            if upsample.in_node(1).value is None:
                return
            scales = upsample.in_node(1).value
            assert len(scales) in (
                4, 5
            ), 'Supported scales rank is 4 or 5, but it is {} for node {}'.format(
                len(scales), upsample_name)
            if not (math.isclose(scales[0], 1, rel_tol=1e-5)
                    and math.isclose(scales[1], 1, rel_tol=1e-5)):
                return
            height_scale = scales[get_height_dim(layout, input_shape_rank)]
            width_scale = scales[get_width_dim(layout, input_shape_rank)]
            if len(scales) == 5:
                depth_scale = scales[get_depth_dim(layout, input_shape_rank)]
        else:
            height_scale = upsample['height_scale']
            width_scale = upsample['width_scale']

        if 1 in upsample.in_ports() and not upsample.in_port(1).disconnected():
            upsample.in_port(1).disconnect()

        upsample_name = upsample.soft_get('name', upsample.id)
        shape = Shape(graph, {'name': upsample_name + '/0_port'}).create_node()

        layout = graph.graph['layout']

        if input_shape_rank == 4:
            begin_value = int64_array(
                [get_height_dim(layout, input_shape_rank)])
            factor_value = float32_array([height_scale, width_scale])
        else:
            begin_value = int64_array(
                [get_depth_dim(layout, input_shape_rank)])
            factor_value = float32_array(
                [depth_scale, height_scale, width_scale])

        ss = create_op_with_const_inputs(
            graph, StridedSlice, {
                1: begin_value,
                2: int64_array([get_width_dim(layout, input_shape_rank) + 1]),
                3: int64_array([1])
            }, {
                'name': upsample_name + '/ss_0_port',
                'begin_mask': int64_array([1]),
                'end_mask': int64_array([1]),
                'new_axis_mask': int64_array([0]),
                'shrink_axis_mask': int64_array([0]),
                'ellipsis_mask': int64_array([0])
            })

        mul = create_op_node_with_second_input(
            graph, Mul, factor_value, {'name': upsample_name + '/factor_mul'})

        source = upsample.in_port(0).get_connection().get_source()
        source.connect(shape.in_port(0))
        shape.out_port(0).connect(ss.in_port(0))

        ss.out_port(0).connect(mul.in_port(0))

        # Create Interpolate operation
        if input_shape_rank == 4:
            axes = int64_array([
                get_height_dim(layout, input_shape_rank),
                get_width_dim(layout, input_shape_rank)
            ])
        else:
            axes = int64_array([
                get_depth_dim(layout, input_shape_rank),
                get_height_dim(layout, input_shape_rank),
                get_width_dim(layout, input_shape_rank)
            ])

        axes_node = Const(graph, {
            'name': upsample_name + '/axis',
            'value': axes
        }).create_node()

        interpolate = Interpolate(
            graph, {
                'mode': upsample.attrs()['mode'],
                'antialias': 0,
                'pads_begin': int64_array([0]),
                'pads_end': int64_array([0]),
                'coordinate_transformation_mode': 'half_pixel',
                'nearest_mode': 'round_prefer_floor',
                'cube_coeff': -0.75,
                'shape_calculation_mode': 'scales',
                'version': 'opset4',
                'in_ports_count': 4
            }).create_node()

        upsample.add_input_port(1, skip_if_exist=True)
        assert upsample.in_port(1).disconnected()
        mul.out_port(0).connect(interpolate.in_port(1))
        axes_node.out_port(0).connect(interpolate.in_port(3))

        scales_node = Const(graph, {
            'name': upsample_name + '/scales',
            'value': factor_value
        }).create_node()
        scales_node.out_port(0).connect(interpolate.in_port(2))

        upsample.in_port(0).get_connection().set_destination(
            interpolate.in_port(0))
        upsample.out_port(0).get_connection().set_source(
            interpolate.out_port(0))

        rename_nodes([(upsample, upsample_name + '/delete'),
                      (interpolate, upsample_name)])

        convert_to_float = Cast(graph, dict(dst_type=np.float32)).create_node()
        convert_to_int = Cast(graph, dict(dst_type=np.int64)).create_node()

        mul.in_port(0).get_connection().insert_node(convert_to_float)
        mul.out_port(0).get_connection().insert_node(convert_to_int)
Beispiel #8
0
 def test_get_height_dim_NDHWC(self):
     self.assertEqual(get_height_dim('NHWC', 5), 2)
Beispiel #9
0
 def test_get_height_dim_NCDHW(self):
     self.assertEqual(get_height_dim('NCHW', 5), 3)
Beispiel #10
0
 def test_get_height_dim_NHWC(self):
     self.assertEqual(get_height_dim('NHWC', 4), 1)
def replace_resize(graph: Graph, resize: Node):
    log.debug("Converting of ONNX Resize-11 to Interpolate-4 "
              "is triggered for node {}.".format(
                  resize.soft_get('name', resize.id)))

    input_shape = resize.in_port(0).data.get_shape()
    input_rank = len(input_shape)
    resize_name = resize.soft_get('name', resize.id)
    if input_rank not in {4, 5}:
        log.warning(
            'The input shape is not 4D or 5D for op with name {}'.format(
                resize_name))
        return

    assert (resize.is_in_port_connected(0) and (resize.is_in_port_connected(2) or resize.is_in_port_connected(3))), \
        "Scales or sizes inputs must be connected to Node {} with op {}.".format(resize.soft_get("name", resize.id),
                                                                                 resize.op)

    assert resize.soft_get('coordinate_transformation_mode') != 'tf_crop_and_resize', \
        'Mode tf_crop_and_resize is not supported for op {} with name {}'.format(resize.op,
                                                                                 resize.soft_get("name", resize.id))

    layout = graph.graph['layout']

    if input_rank == 4:
        begin_dim = get_height_dim(layout, input_rank)
        end_dim = get_width_dim(layout, input_rank) + 1
    else:
        begin_dim = get_depth_dim(layout, input_rank)
        end_dim = get_width_dim(layout, input_rank) + 1

    sizes_ss = create_op_with_const_inputs(
        graph, StridedSlice, {
            1: int64_array([begin_dim]),
            2: int64_array([end_dim]),
            3: int64_array([1])
        }, {
            'name': resize_name + '/StridedSlice_sizes',
            'begin_mask': int64_array([1]),
            'end_mask': int64_array([1]),
            'new_axis_mask': int64_array([0]),
            'shrink_axis_mask': int64_array([0]),
            'ellipsis_mask': int64_array([0])
        })
    scales_ss = create_op_with_const_inputs(
        graph, StridedSlice, {
            1: int64_array([begin_dim]),
            2: int64_array([end_dim]),
            3: int64_array([1])
        }, {
            'name': resize_name + '/StridedSlice_scales',
            'begin_mask': int64_array([1]),
            'end_mask': int64_array([1]),
            'new_axis_mask': int64_array([0]),
            'shrink_axis_mask': int64_array([0]),
            'ellipsis_mask': int64_array([0])
        })
    axes_node = Const(
        graph, {
            'name': resize_name + '/axis',
            'value': int64_array(np.arange(begin_dim, end_dim))
        }).create_node()

    shape_calculation_mode = 'sizes' if resize.is_in_port_connected(
        3) else 'scales'

    interpolate_node = Interpolate(
        graph, {
            'version': 'opset4',
            'mode': convert_mode(resize.mode),
            'coordinate_transformation_mode':
            resize.coordinate_transformation_mode,
            'cube_coeff': resize.cube_coeff,
            'nearest_mode': resize.nearest_mode,
            'pads_begin': int64_array([0]),
            'pads_end': int64_array([0]),
            'antialias': 0,
            'shape_calculation_mode': shape_calculation_mode,
            'in_ports_count': 4
        }).create_node()

    axes_node.out_port(0).connect(interpolate_node.in_port(3))
    shape_of = Shape(graph, {'name': resize_name + '/ShapeOf'}).create_node()

    add_node = create_op_with_const_inputs(graph, Add,
                                           {1: float_array([1.0e-5])},
                                           {'name': resize_name + '/Add'})

    dst_dtype = np.float32  # even if data_type=FP16 use float32 for shape values

    if not resize.is_in_port_connected(3):
        cast_shape_to_float = Cast(graph, {
            'dst_type': dst_dtype
        }).create_node()
        mul_node = Mul(graph, {'name': resize_name + '/Mul'}).create_node()
        shape_of.out_port(0).connect(cast_shape_to_float.in_port(0))
        cast_shape_to_float.out_port(0).connect(mul_node.in_port(0))
        cast_add_result_to_int = Cast(graph, {
            'dst_type': np.int64
        }).create_node()
        floor_node = Floor(graph, {
            'name': resize_name + '/Floor'
        }).create_node()
        mul_node.out_port(0).connect(add_node.in_port(0))
        add_node.out_port(0).connect(floor_node.in_port(0))
        floor_node.out_port(0).connect(cast_add_result_to_int.in_port(0))
        cast_add_result_to_int.out_port(0).connect(sizes_ss.in_port(0))
        sizes_ss.out_port(0).connect(interpolate_node.in_port(1))
        scales_ss.out_port(0).connect(interpolate_node.in_port(2))

        connection_of_resize_input = resize.in_port(0).get_connection()
        connection_of_resize_input.set_destination(interpolate_node.in_port(0))

        connection_of_scales = resize.in_port(2).get_connection()
        connection_of_scales.set_destination(scales_ss.in_port(0))

        connection_of_resize_input.get_source().connect(shape_of.in_port(0))
        connection_of_scales.get_source().connect(mul_node.in_port(1))
    else:
        cast_shape_to_float = Cast(graph, {
            'dst_type': dst_dtype
        }).create_node()
        cast_sizes_to_float = Cast(graph, {
            'dst_type': dst_dtype
        }).create_node()
        div_node = Div(graph, {'name': resize_name + '/Div'}).create_node()
        cast_sizes_to_float.out_port(0).connect(div_node.in_port(0))
        cast_shape_to_float.out_port(0).connect(div_node.in_port(1))
        shape_of.out_port(0).connect(cast_shape_to_float.in_port(0))
        div_node.out_port(0).connect(add_node.in_port(0))
        add_node.out_port(0).connect(scales_ss.in_port(0))
        scales_ss.out_port(0).connect(interpolate_node.in_port(2))
        sizes_ss.out_port(0).connect(interpolate_node.in_port(1))

        connection_of_resize_input = resize.in_port(0).get_connection()
        connection_of_resize_input.set_destination(interpolate_node.in_port(0))

        connection_of_sizes = resize.in_port(3).get_connection()
        connection_of_sizes.set_destination(sizes_ss.in_port(0))

        connection_of_resize_input.get_source().connect(shape_of.in_port(0))
        connection_of_sizes.get_source().connect(
            cast_sizes_to_float.in_port(0))

    rename_nodes([(resize, resize_name + '/delete'),
                  (interpolate_node, resize_name)])
    resize.out_port(0).get_connection().set_source(
        interpolate_node.out_port(0))
Beispiel #12
0
    def interp_infer(node: Node):
        layout = node.graph.graph['layout']
        assert len(layout) == 4
        if len(node.in_nodes()) == 2:
            src_shape = node.in_node(0).shape
            dst_shape = node.in_node(1).shape

            # in Caffe can be 2 inputs too, but shape should be got from shape of the second input
            if node.parse_2nd_input == 'shape':
                dst_shape = [dst_shape[get_height_dim(layout, 4)], dst_shape[get_width_dim(layout, 4)]]
            else:
                # it is TF case
                dst_shape = node.in_node(1).value

            if src_shape is None or dst_shape is None or len(src_shape) != 4 or len(dst_shape) != 2:
                log.error(
                    'Node {} with op {} cannot be converted to Resample layer because there is no enough info about '
                    'src/dst shapes: src_shape = {}, dst_shape = {}'.format(node.name, node.op, src_shape, dst_shape))
                node.type = None  # prevent translation to a valid IE layer
                return
            in_height = src_shape[get_height_dim(layout, 4)]
            in_width = src_shape[get_width_dim(layout, 4)]
            out_height = dst_shape[0]
            out_width = dst_shape[1]

            node.factor = factor_update(
                node.factor,
                [float(out_height) / in_height, float(out_width) / in_width],
                [in_height, in_width],
                [out_height, out_width],
                node.soft_get('name')
            )

            if node.factor is None:
                node['width'] = out_width
                node['height'] = out_height

            node.out_node().shape = shape_for_layout(layout,
                                                     batch=src_shape[get_batch_dim(layout, 4)],
                                                     features=src_shape[get_features_dim(layout, 4)],
                                                     height=out_height,
                                                     width=out_width)
            node.graph.remove_edge(node.in_node(1).id, node.id)
        else:
            outn = node.out_node(0)

            in_shape = node.in_node(0)
            num_ = in_shape.shape[get_batch_dim(layout, 4)]
            channels_ = in_shape.shape[get_features_dim(layout, 4)]
            height_in_ = in_shape.shape[get_height_dim(layout, 4)]
            width_in_ = in_shape.shape[get_width_dim(layout, 4)]

            height_out_ = height_in_ + node.pad_beg + node.pad_end
            width_out_ = width_in_ + node.pad_beg + node.pad_end

            if node.shrink_factor != 1 and node.zoom_factor == 1:
                shrink_factor = node.shrink_factor
                if shrink_factor < 1:
                    log.error('Shrink factor should be positive in node {}'.format(node.id))
                    return None
                height_out_ = (height_out_ - 1) / shrink_factor + 1
                width_out_ = (width_out_ - 1) / shrink_factor + 1
            elif node.shrink_factor == 1 and node.zoom_factor != 1:
                zoom_factor = node.zoom_factor
                if zoom_factor < 1:
                    log.error('Zoom factor should be positive in node {}'.format(node.id))
                    return None

                node['debug_message'] = 'Interp layer shape inference function may be wrong, please, try to update ' \
                                        'layer shape inference function in the file (openvino/tools/mo/ops/interp.op at the ' \
                                        'line {}).'.format(inspect.currentframe().f_lineno) + refer_to_faq_msg(100)
                # Reshape methods can be different in some cases
                # Commented out section represents reshape that used in deeplab-caffe
                # Uncomment the following lines, if your model was trained with deeplab-caffe
                # or have the same reshape method
                # height_out_ = height_out_ + (height_out_ - 1) * (zoom_factor - 1)
                # width_out_ = width_out_ + (width_out_ - 1) * (zoom_factor - 1)

                # Comment out the following lines if you use the reshape method from previous section
                height_out_ = height_out_ * zoom_factor
                width_out_ = width_out_ * zoom_factor
            elif node.width != 0 and node.height != 0:
                height_out_ = node.height
                width_out_ = node.width
            elif node.shrink_factor != 1 and node.zoom_factor != 1:
                shrink_factor = node.shrink_factor
                zoom_factor = node.zoom_factor
                if shrink_factor < 1:
                    log.error('Shrink factor should be positive in node {}'.format(node.id))
                    return None
                if zoom_factor < 1:
                    log.error('Zoom factor should be positive in node {}'.format(node.id))
                    return None
                height_out_ = (height_out_ - 1) / shrink_factor + 1
                width_out_ = (width_out_ - 1) / shrink_factor + 1
                height_out_ = height_out_ + (height_out_ - 1) * (zoom_factor - 1)
                width_out_ = width_out_ + (width_out_ - 1) * (zoom_factor - 1)

            outn.shape = shape_for_layout(layout,
                                          batch=num_,
                                          features=channels_,
                                          height=height_out_,
                                          width=width_out_)