def opr(operation, op1, op2=()): result = () if isinstance(op1, types_Number): # prefix +/- if op2==(): if operation=='+': result = operator.pos(op1) elif operation=='-': result = operator.neg(op1) elif isinstance(op2, types_Number): if operation=='+': result = operator.add(op1,op2) elif operation=='-': result = operator.sub(op1,op2) # string '+' elif operation=='+' and all([isinstance(x,types.StringTypes) for x in (op1,op2)]): result = operator.add(op1,op2) return result
def visit_UnaryOpExpr(self, node): # TODO: handle TypeError 'bad operand type for ...' exceptions operand = self.visit(node.operand) if isinstance(node.op, nodes.UMinus): return operator.neg(self.node_as_value(operand)) elif isinstance(node.op, nodes.UPlus): return operator.pos(self.node_as_value(operand)) else: raise RuntimeError() # pragma: no cover
def test_neg(self): self.failUnlessRaises(TypeError, operator.neg) self.failUnlessRaises(TypeError, operator.neg, None) self.failUnless(operator.neg(5) == -5) self.failUnless(operator.neg(-5) == 5) self.failUnless(operator.neg(0) == 0) self.failUnless(operator.neg(-0) == 0)
def test_neg(self): self.assertRaises(TypeError, operator.neg) self.assertRaises(TypeError, operator.neg, None) self.assertTrue(operator.neg(5) == -5) self.assertTrue(operator.neg(-5) == 5) self.assertTrue(operator.neg(0) == 0) self.assertTrue(operator.neg(-0) == 0)
def test_neg(self): self.failUnlessRaises(TypeError, operator.neg) self.failUnlessRaises(TypeError, operator.neg, None) self.assertEqual(operator.neg(5), -5) self.assertEqual(operator.neg(-5), 5) self.assertEqual(operator.neg(0), 0) self.assertEqual(operator.neg(-0), 0)
def test_neg(self): #operator = self.module self.assertRaises(TypeError, operator.neg) self.assertRaises(TypeError, operator.neg, None) self.assertEqual(operator.neg(5), -5) self.assertEqual(operator.neg(-5), 5) self.assertEqual(operator.neg(0), 0) self.assertEqual(operator.neg(-0), 0)
def test_result(self): types = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] with suppress_warnings() as sup: sup.filter(RuntimeWarning) for dt in types: a = np.ones((), dtype=dt)[()] assert_equal(operator.neg(a) + a, 0)
def clonesBall( self ): # clone ball 1 = rect( x, y, w, h ), ( fpdx, fpdy ) clone = None try: xbmcgui.lock() for ball in self.balls: if not ball.dead: rect = ball.ballControl.getRect() fpd = neg( ball.fpdx ), neg( ball.fpdy ) clone = rect, fpd break except: print_exc() xbmcgui.unlock() if clone: self.new_ball( clone )
def getlocaldata(sms,dr,flst): for f in flst: fullf = os.path.join(dr,f) if os.path.isfile(fullf): tup = (fullf, os.path.getsize(fullf)) _listOfFiles.append(tup) tmp = sorted(_listOfFiles, key=operator.itemgetter(1)) sms[1] = tmp[operator.neg(sms[0]):]
def perturb_data(loss_func, optimizer, model, optimal_subset, numEpochs, batchSize, constrainWeight, epsilon, invertTargets, negateLoss, ): """ the model parameter is pre-trained model that minimizes loss. By freezing the weights of all layers except the embedding layer and training with either inverted target vector or negated loss, we can perturb the embedding layer weights to the input data as a perturbed embedding matrix--the one-hot vector input type cannot be perturbed because its values are integers whereas the embedding matrix is real. The embedding layer weight matrix functions as a lookup-table so that each row corresponds to a one-hot index--by perturbing the weight matrix/lookup-table we can construct perturbed embedding matrix inputs using the original one-hot vector input types and mapping them to perturbed embedding matrix input types via the perturbed weight matrix/lookup-table :param model: :param optimal_subset: :param loss_func: :param optimizer: :param numEpochs: :param constrainWeight: :param epsilon: :param invertTargets: :param negateLoss: :return: """ from operator import neg def constrain_fn(embedW, embedW_orig, eps): return K.T.nlinalg.trace(K.dot(K.transpose(embedW_orig - embedW), embedW_orig - embedW)) - eps # freeze the weights of every layer except embedding layer for idx, L in enumerate(model.layers): if idx == 0: continue L.trainable = False assert model.layers[0].trainable is True, "embedding layer must be trainable" constrain_fn_args = [model.layers[0].W, model.layers[0].W.get_value(), epsilon] loss = constrained_loss((lambda ytru, ypred: neg(loss_func(ytru, ypred)) if negateLoss else loss_func(ytru, ypred)), constrain_fn, constrain_fn_args, constraint_weight=constrainWeight) model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy']) targets = optimal_subset[1] onehotVectors = optimal_subset[0] if invertTargets: targets = np.logical_not(targets) callbacks = [Batch_EarlyStopping(verbose=1)] model.fit(onehotVectors, targets, nb_epoch=numEpochs, batch_size=batchSize, callbacks=callbacks) return model
def score_getter_penalize_overlap_estimated(a, b): '''Penalizes overlap, to try to find non-overlapping segments''' if a == None or overlap(a,b) == 0: return len_aln(b) * (b.pctid / 100.0) olap = overlap(a,b) olap_penalty = b_olap_matches = olap * (b.pctid / 100.0) * neg(1) b_hang_matches = (len_aln(b) - olap) * (b.pctid / 100.0) return olap_penalty + b_hang_matches
def error(geoprint, radians=False): """Returns the error of a given geoprint. If radians is true, return the error in radians, otherwise degrees. """ e = 90.0 * pow(2, neg(len(geoprint) - 1)) if radians: return rads(e) return e
def candidate_killer(candidates): scoreboard = [] # here we will sort the candidates for i, c in enumerate(candidates): # for each candidate in the list of candidates, fill its scoreboard.append((len(c),neg(c[-1]),i)) # length, negative of the last item, index in the list scoreboard.sort(reverse=True) # reverse sort, longest with smallest last item first (because we use the negative) good_candidates = [candidates[scoreboard[0][2]]] # put the first one into the list of good candidates best_last = scoreboard[0][1] # keep the information of the smallest last item so far (we use the negative) for s in scoreboard: # from the scoreboard if s[1] > best_last: # if the last item is smaller than the best known (we compare its negative!) good_candidates.append(candidates[s[2]]) # append the candidate into the list of good ones best_last = s[1] # and update the smallest last item (negative) return good_candidates # return the list of good candidates
def solve_pnp_distance(self, box,poses): rows = box.shape[0] distances = np.zeros((rows,1)) for a in range(rows): pose = poses[:3,a] distance = pose[2] if distance < 0: distance = neg(distance) distances = np.resize(distances,(a,1)) distances = np.append(distances,distance) return distances
def DiffInDays(self, d1, d2): """ calculate difference between two dates rounded to days """ d1, d2 = self.__DiffCheck(d1, d2) if d1 == 'N/A' or d2 == 'N/A': return 'N/A' # Calculate difference in seconds delta = d1 - d2 if delta < 0: delta = operator.neg(delta) # Calculate days days = int(round(delta / 60 / 60 / 24)) if days == 0: days = 1 return days
def score_getter_matching_consensus_estimated(a, b): '''Scoring Function for filtering alignments for downstream consensus. Overlaps are sort of encouraged ''' if a == None or overlap(a,b) == 0: return len_aln(b) * (b.pctid / 100.0) olap = overlap(a,b) a_olap_matches = olap * (a.pctid / 100.0) * neg(0.5) b_olap_matches = olap * (b.pctid / 100.0) * 0.5 b_hang_matches = (len_aln(b) - olap) * (b.pctid / 100.0) score = a_olap_matches + b_olap_matches + b_hang_matches return score
def unary_exp(tokens): assert len(tokens) if tokens[0] == "-": tokens.pop(0) value = value_exp(tokens) return lambda row, ctx: operator.neg(value(row, ctx)) elif tokens[0] == "not": tokens.pop(0) value = value_exp(tokens) return lambda row, ctx: operator.not_(value(row, ctx)) elif tokens[0] == "+": tokens.pop(0) return value_exp(tokens)
def ActualYear(self, timestamp = None, name = 'ActualYear', selected = None, rangeFrom = None, rangeTo = None, plus = 0, minus = 0, withNull = 0, nullSelected = 0): if not timestamp: timestamp = time.time() else: timestamp = self.CareForTimestamp(timestamp) if rangeFrom is None: rangeFrom = int(time.strftime('%Y', time.localtime(timestamp))) elif rangeFrom < 0: # actual year - rangeFrom rf = int(time.strftime('%Y', time.localtime(timestamp))) - operator.neg(rangeFrom) rangeFrom = rf if rangeTo is None: rangeTo = rangeFrom + 1 elif rangeTo < 1000: rangeTo = int(time.strftime('%Y', time.localtime(timestamp))) + rangeTo return self.__GenerateActual(timestamp, name, selected, '%Y', (rangeFrom, rangeTo), plus, minus, withNull, nullSelected)
def test_operator_high_cohesive_invoke(): # f objects can be called as functions assert add(1, 2) == 3 assert sub(7, 3) == 4 assert mul(3, 7) == 21 assert truediv(32, 4) == 8 assert neg(1) == -1 # works with arbitrary numbers of arguments assert f(bool)() is False assert f(max)([1]) == 1 assert f(max)(6, 1) == 6 assert f(max)(6, 1, 9) == 9 assert f(max)(*range(10)) == 9 # works with keyword arguments assert f(int)('10', base=16) == 16
def _get_array_size(self, node): """Calculate the size of the array.""" if isinstance(node, c_ast.Constant): size = int(node.value) elif isinstance(node, c_ast.UnaryOp): if node.op == '-': size = operator.neg(self._get_array_size(node.expr)) else: size = self._get_array_size(node.expr) elif isinstance(node, c_ast.BinaryOp): mapping = {'+': operator.add, '-': operator.sub, '*': operator.mul, '/': operator.floordiv} left = self._get_array_size(node.left) right = self._get_array_size(node.right) size = mapping[node.op](left, right) else: raise ParseError('This type of array not supported: %s' % node) return size
def get_project_name_and_entry_id(self, series, feed, entry): base_regex = "Episode [\d\.]+ - (.+)" rep = re.compile("%s with .+" % base_regex) if rep.match(entry.title): title = rep.match(entry.title).groups()[0] else: # The episode title does not contain " with YYY" rep = re.compile(base_regex) if rep.match(entry.title): title = rep.match(entry.title).groups()[0] else: # No episode number (probably not a project's resource...) title = entry.title # Strip the following bits if the name ends in it for s in (", and more", " and more", ","): if title.endswith(s): title = title[: neg(len(s))] title = title.strip() return (title, entry.id)
def __init__(self): self.version = None self.options = None self.function_stack = [] # stack of functions called, from top-level to currently executing one # namespace includes variables and rules self.namespace = {} # Will be hash list of input files of whatever textual content self.namespace['report'] = OrderedDict() self.namespace['report']['title'] = "RCQC Quality Control Report" self.namespace['report']['tool_version'] = CODE_VERSION self.namespace['report']['job'] = {'status': 'ok'} self.namespace['report']['quality_control'] = {'status': 'ok'} self.namespace['sections'] = [] self.namespace['rule_index'] = {} # rule index based on location of store(_, location) field. 1 per. self.namespace['name_index'] = {} # index based on last (z) key of x.y.z namespace reference. self.namespace['files'] = [] self.namespace['file_names'] = {} self.namespace['iterator'] = {} # Provides the dictionary for each current iterator function evaluation (at call depth). self.namespace['report_html'] = '' self.input_file_paths = None self.ruleset_file_path = None self.output_json_file = None # Really core functions below require access to RCQC class variables. # Other functions can be added in rcqc_functions RCQCClassFnExtension and RCQCStaticFnExtension classes. self.functions = { '=': lambda location, value: self.storeNamespaceValue(value, location), 'store': self.storeNamespaceValue, 'store_array': self.storeNamespaceValueAsArray, 'if': self.fnIf, 'fail': self.fail, 'exit': self.exit, 'exists': lambda location: self.namespaceReadValue(location, True), '-': lambda x: operator.neg(x), 'not': lambda x: operator.not_(x), 'function': lambda x: self.applyRules(x) }
def diff(self, d1, d2): # Check d1 and d2 for type; if string (no timestamp) convert if not d1 or not d2: return 'N/A' if type(d1) is types.StringType: if d1[0] == '0': return 'N/A' if self.isISODate(d1): d1 = self.isoToTimestamp(d1) if type(d2) is types.StringType: if d2[0] == '0': return 'N/A' if self.isISODate(d2): d2 = self.isoToTimestamp(d2) # Calculate difference in seconds delta = d1 - d2 if delta < 0: delta = operator.neg(delta) # Calculate days days = int(round(delta / 60 / 60 / 24)) if days == 0: days = 1 return days
def __neg__(self): return Quaternion([operator.neg(c) for c in self]) def __pos__(self): return Quaternion([operator.pos(c) for c in self])
def __neg__(self): return self.__class__(operator.neg(self._magnitude), self._units)
print() # pop print(d.pop("dob")) print(d) #---------------------------------- Operators --------------------------------- print("\n" * 3, "\t" * 2, "Operators\n\n" * 1) import operator print("pow(5,5)\t\t", operator.pow(5, 5)) print("abs(33)\t\t", operator.abs(33)) print("add(2,3)\t\t", operator.add(2, 3)) print("eq(2,2)\t\t", operator.eq(2, 2)) print("mod(23,8)\t\t", operator.mod(23, 8)) print("neg(66)\t\t", operator.neg(66)) print("xor(22,55)\t\t", operator.xor(22, 55)) print("sub(55,77)\t\t", operator.sub(55, 77)) print() # != < > == >= <= and or not # identity operator--> is / is not print(2 is 2) print(2 is not 2) #---------------------------------- Operator Overloading --------------------------------- print("\n" * 3, "\t" * 2, "Operator Overloading\n\n" * 1) # + (Strings) x = "3" #input() y = "23" #input()
def run_model(self): ## initialize data structure self.res = np.zeros([ self.duration, len(MODEL_RUN_COLUMNS) + len(EXPORT_COLUMNS_FOR_CSV) ], dtype=np.float32) self.res[0, 0] = self.nf1 self.res[0, 1] = self.nf2 self.res[0, 2] = self.nf3 self.res[0, 3] = self.nm1 self.res[0, 4] = self.nm2 self.res[0, 5] = self.nm3 self.res[0, 6] = 0 self.res[0, 7] = 0 self.res[0, 8] = 0 self.res[0, 9] = self.female_promotion_probability_1 self.res[0, 10] = self.female_promotion_probability_2 self.res[0, 11] = np.float32( sum(list([self.nf1, self.nf2, self.nf3])) / sum( list([ self.nf1, self.nf2, self.nf3, self.nm1, self.nm2, self.nm3 ]))) self.res[0, 12] = 0 self.res[0, 13] = self.res[0, 0:6].sum() self.res[0, 14:] = 0 # I assign the state variables to temporary variables. That way I # don't have to worry about overwriting the original state variables. hiring_rate_female_level_1 = self.bf1 hiring_rate_female_level_2 = self.bf2 hiring_rate_female_level_3 = self.bf3 attrition_rate_female_level_1 = self.df1 attrition_rate_female_level_2 = self.df2 attrition_rate_female_level_3 = self.df3 attrition_rate_male_level_1 = self.dm1 attrition_rate_male_level_2 = self.dm2 attrition_rate_male_level_3 = self.dm3 probability_of_outside_hire_level_3 = self.phire3 probability_of_outside_hire_level_2 = self.phire2 female_promotion_probability_1_2 = self.female_promotion_probability_1 female_promotion_probability_2_3 = self.female_promotion_probability_2 department_size_upper_bound = self.upperbound department_size_lower_bound = self.lowerbound variation_range = self.variation_range unfilled_vacanies = 0 change_to_level_1 = 0 change_to_level_2 = 0 change_to_level_3 = 0 for i in range(1, self.duration): # initialize variables for this iteration prev_number_of_females_level_1 = self.res[i - 1, 0] prev_number_of_females_level_2 = self.res[i - 1, 1] prev_number_of_females_level_3 = self.res[i - 1, 2] prev_number_of_males_level_1 = self.res[i - 1, 3] prev_number_of_males_level_2 = self.res[i - 1, 4] prev_number_of_males_level_3 = self.res[i - 1, 5] prev_number_of_vacancies_level_3 = self.res[i - 1, 6] prev_number_of_vacancies_level_2 = self.res[i - 1, 7] prev_number_of_vacancies_level_1 = self.res[i - 1, 8] prev_promotion_rate_female_level_1 = self.female_promotion_probability_1 prev_promotion_rate_female_level_2 = self.female_promotion_probability_2 department_size = self.res[i - 1, 0:6].sum() # Process Model # Determine department size variation for this timestep # first both female and males leave the department according to binomial probability. female_attrition_level_3 = binomial(prev_number_of_females_level_3, attrition_rate_female_level_3) male_attrition_level_3 = binomial(prev_number_of_males_level_3, attrition_rate_male_level_3) # the departures create a set of vacancies. These vacancies are the basis for new hiring total_vacancies_3 = female_attrition_level_3 + \ male_attrition_level_3 + change_to_level_3 # women are hired first and then men hiring_female_3 = binomial( max(0, total_vacancies_3), probability_of_outside_hire_level_3 * hiring_rate_female_level_3) hiring_male_3 = binomial( max(0, total_vacancies_3 - hiring_female_3), probability_of_outside_hire_level_3 * (1 - hiring_rate_female_level_3)) total_hiring_3 = hiring_female_3 + hiring_male_3 # level 3 vacancies that are not filled by new hires create opportunities # for promotion from level 2. Again women are promoted first and men second. # Also note the error trap that if we try to promote more professors from # level 2 than there exist at level 2, then we will prevent this from happening. vacancies_remaining_after_hiring_3 = total_vacancies_3 - total_hiring_3 potential_promotions_after_hiring_3 = max( 0, vacancies_remaining_after_hiring_3) promotions_of_females_level_2_3 = binomial( min(potential_promotions_after_hiring_3, prev_number_of_females_level_2), female_promotion_probability_2_3) promotions_of_males_level_2_3 = binomial( max( 0, min( vacancies_remaining_after_hiring_3 - promotions_of_females_level_2_3, prev_number_of_males_level_2)), 1 - female_promotion_probability_2_3) # attrition at level 2 - either people leave from attrition or promotion female_attrition_level_2 = binomial( max( 0, prev_number_of_females_level_2 - promotions_of_females_level_2_3), attrition_rate_female_level_2) male_attrition_level_2 = binomial( max( 0, prev_number_of_males_level_2 - promotions_of_males_level_2_3), attrition_rate_male_level_2) # the departures create a set of vacancies. These vacancies are the basis for new hiring total_vacancies_2 = sum( list([ female_attrition_level_2, male_attrition_level_2, promotions_of_females_level_2_3, promotions_of_males_level_2_3, change_to_level_2 ])) hiring_female_2 = binomial( max(0, total_vacancies_2), probability_of_outside_hire_level_2 * hiring_rate_female_level_2) hiring_male_2 = binomial( max(0, total_vacancies_2 - hiring_female_2), probability_of_outside_hire_level_2 * (1 - hiring_rate_female_level_2)) total_hiring_2 = hiring_female_2 + hiring_male_2 vacancies_remaining_after_hiring_2 = total_vacancies_2 - total_hiring_2 potential_promotions_after_hiring_2 = max( 0, vacancies_remaining_after_hiring_2) promotions_of_females_level_1_2 = binomial( max( 0, min(potential_promotions_after_hiring_2, prev_number_of_females_level_1)), female_promotion_probability_1_2) promotions_of_males_level_1_2 = binomial( max( 0, min( vacancies_remaining_after_hiring_2 - promotions_of_females_level_1_2, prev_number_of_females_level_1)), probability_of_outside_hire_level_2 * (1 - female_promotion_probability_1_2)) ## Level 1 female_attrition_level_1 = binomial( max( 0, prev_number_of_females_level_1 - promotions_of_females_level_1_2), attrition_rate_female_level_1) male_attrition_level_1 = binomial( max( 0, prev_number_of_males_level_1 - promotions_of_males_level_1_2), attrition_rate_male_level_1) total_vacancies_1 = sum( list([ female_attrition_level_1, male_attrition_level_1, promotions_of_females_level_1_2, promotions_of_males_level_1_2, change_to_level_1 ])) hiring_female_1 = binomial(max(0, total_vacancies_1), hiring_rate_female_level_1) hiring_male_1 = binomial( max(0, total_vacancies_1 - hiring_female_1), 1 - hiring_rate_female_level_1) # Write state variables to array and move to next iteration self.res[i, 0] = number_of_females_level_1 = sum( list([ prev_number_of_females_level_1, neg(female_attrition_level_1), neg(promotions_of_females_level_1_2), hiring_female_1 ])) assert (number_of_females_level_1 >= 0), "negative number of females 1" self.res[i, 1] = number_of_females_level_2 = max( 0, sum( list([ prev_number_of_females_level_2, neg(female_attrition_level_2), neg(promotions_of_females_level_2_3), promotions_of_females_level_1_2, hiring_female_2 ]))) self.res[i, 2] = number_of_females_level_3 = sum( list([ prev_number_of_females_level_3, neg(female_attrition_level_3), promotions_of_females_level_2_3, hiring_female_3 ])) self.res[i, 3] = number_of_males_level_1 = sum( list([ prev_number_of_males_level_1, neg(male_attrition_level_1), neg(promotions_of_males_level_1_2), hiring_male_1 ])) self.res[i, 4] = number_of_males_level_2 = sum( list([ prev_number_of_males_level_2, neg(male_attrition_level_2), neg(promotions_of_males_level_2_3), promotions_of_males_level_1_2, hiring_male_2 ])) self.res[i, 5] = number_of_males_level_3 = sum( list([ prev_number_of_males_level_3, neg(male_attrition_level_3), promotions_of_males_level_2_3, hiring_male_3 ])) self.res[i, 6] = sum( list([male_attrition_level_3, female_attrition_level_3])) self.res[i, 7] = sum( list([ male_attrition_level_2, female_attrition_level_2, promotions_of_females_level_2_3, promotions_of_males_level_2_3 ])) self.res[i, 8] = sum( list([ male_attrition_level_1, female_attrition_level_1, promotions_of_males_level_1_2, promotions_of_females_level_1_2 ])) self.res[i, 9] = self.female_promotion_probability_1 self.res[i, 10] = self.female_promotion_probability_2 self.res[i, 11] = np.float32( truediv( sum( list([ number_of_females_level_1, number_of_females_level_2, number_of_females_level_3 ])), sum( list([ number_of_females_level_1, number_of_females_level_2, number_of_females_level_3, number_of_males_level_1, number_of_males_level_2, number_of_males_level_3 ])))) unfilled_vacanies = abs(department_size - self.res[i, 0:6].sum()) self.res[i, 12] = unfilled_vacanies department_size = self.res[i, 0:6].sum() self.res[i, 13] = department_size self.res[i, 14] = hiring_female_3 self.res[i, 15] = hiring_male_3 self.res[i, 16] = hiring_female_2 self.res[i, 17] = hiring_male_2 self.res[i, 18] = hiring_female_1 self.res[i, 19] = hiring_male_1 self.res[i, 20] = 0 self.res[i, 21] = 0 self.res[i, 22] = promotions_of_females_level_2_3 self.res[i, 23] = promotions_of_males_level_2_3 self.res[i, 24] = promotions_of_females_level_1_2 self.res[i, 25] = promotions_of_males_level_1_2 self.res[i, 26] = hiring_rate_female_level_1 self.res[i, 27] = hiring_rate_female_level_2 self.res[i, 28] = hiring_rate_female_level_3 self.res[i, 29] = 1 - hiring_rate_female_level_1 self.res[i, 30] = 1 - hiring_rate_female_level_2 self.res[i, 31] = 1 - hiring_rate_female_level_3 self.res[i, 32] = attrition_rate_female_level_1 self.res[i, 33] = attrition_rate_female_level_2 self.res[i, 34] = attrition_rate_female_level_3 self.res[i, 35] = attrition_rate_male_level_1 self.res[i, 36] = attrition_rate_male_level_2 self.res[i, 37] = attrition_rate_male_level_3 self.res[i, 38] = 1 self.res[i, 39] = probability_of_outside_hire_level_2 self.res[i, 40] = probability_of_outside_hire_level_3 self.res[i, 41] = female_promotion_probability_1_2 self.res[i, 42] = female_promotion_probability_2_3 self.res[i, 43] = 1 - female_promotion_probability_1_2 self.res[i, 44] = 1 - female_promotion_probability_2_3 self.res[i, 45] = department_size_upper_bound self.res[i, 46] = department_size_lower_bound self.res[i, 47] = variation_range self.res[i, 48] = self.duration # this produces an array of values. Then I need to assign the # values to levels. So if I have say a range of variation of 5. I # will get something like [-1,0,1,-1,0] or something. I need to # turn this into something like [2,-1,0]. That means randomly # assigning the values in the array to levels. flag = False while flag == False: changes = np.random.choice([-1, 0, 1], variation_range) levels = np.random.choice([1, 2, 3], variation_range) # # random level # choice # need to test whether the candidate changes keep the # department size within bounds. # print(["old dept size:", department_size, # "new dept size:", self.res[i, 0:6].sum(), # "candidate:", department_size + # changes.sum(), # " added postions: ", changes.sum(), # "unfilled ", unfilled_vacanies]) if (department_size + changes.sum() <= department_size_upper_bound and department_size + changes.sum() >= department_size_lower_bound): change_to_level_3 = np.int( changes[np.where(levels == 3)[0]].sum()) change_to_level_2 = np.int( changes[np.where(levels == 2)[0]].sum()) change_to_level_1 = np.int( changes[np.where(levels == 1)[0]].sum()) flag = True if (department_size > department_size_upper_bound): change_to_level_3 = 0 change_to_level_2 = 0 change_to_level_1 = 0 flag = True if department_size < department_size_lower_bound: changes = np.ones(variation_range) change_to_level_3 = np.int( changes[np.where(levels == 3)[0]].sum()) change_to_level_2 = np.int( changes[np.where(levels == 2)[0]].sum()) change_to_level_1 = np.int( changes[np.where(levels == 1)[0]].sum()) flag = True df_ = pd.DataFrame(self.res) df_.columns = MODEL_RUN_COLUMNS + EXPORT_COLUMNS_FOR_CSV recarray_results = df_.to_records(index=True) self.run = recarray_results return recarray_results
def __neg__(self): return NonStandardInteger(operator.neg(self.val))
def __neg__(self): return Coordinates(operator.neg(self.x), operator.neg(self.y), operator.neg(self.z))
def negate_usecase(x): return operator.neg(x)
def get_score(self): from math import sin, cos from operator import add, sub, mul, neg div = lambda a, b: a / b if b != 0 else 1 # protected division operator return div(self.mbs, neg(mul(self.ed, div(self.ls, self.mbs)))) + self.ks * Feature.KS_MAGNIFIER
def __neg__(self): return Vec2D(operator.neg(self.x), operator.neg(self.y))
def run_parameter_sweep(self, number_of_runs, param, llim, ulim, num_of_steps): ''' This function sweeps a single parameter and captures the effect of that variation on the overall model. Any valid parameter can be chosen. :param number_of_runs: The number of model iterations per parameter value :type number_of_runs: int :param param: The name of the parameter to sweep :type param: basestring :param llim: lower limit of the parameter value :type llim: float :param ulim: upper limit of the parameter value :type ulim: float :param num_of_steps: total number of increments in the range between the upper and lower limits. :type num_of_steps: int :return: a Dataframe containing individual model runs using the parameter increments :rtype: pandas Dataframe ''' # First I will create a structured array to hold the results of the # simulation. The size of the array should be one for each step in the # parameter sweep. To calculate that, parameter_sweep_increments = np.linspace(llim, ulim, num_of_steps) parameter_sweep_results = pd.DataFrame( np.zeros([ len(parameter_sweep_increments), len(RESULTS_COLUMNS + FEMALE_MATRIX_COLUMNS[1:]) + 1 ])) parameter_sweep_results.columns = ['increment'] + RESULTS_COLUMNS + \ FEMALE_MATRIX_COLUMNS[1:] parameter_sweep_results.loc[:, 'increment'] = parameter_sweep_increments # Run simulations with parameter increments and collect into a container. for i, val in enumerate(parameter_sweep_increments): setattr(self, param, val) self.run_multiple(number_of_runs) # Sets the values the sweep data matrix to the last values in the # multiple runs results_matrix. parameter_sweep_results.iloc[i, 1:neg(len(FEMALE_MATRIX_COLUMNS)) - 1] = self.results_matrix.tail(1).iloc[ 0, 1:-1] # Sets the year in the sweep data matrix to the last year in the # results_matrix. parameter_sweep_results.iloc[i, 1] = self.results_matrix.tail( 1).iloc[0, len(RESULTS_COLUMNS)] # Fills the sweep matrix with data from the female percentage # matrices parameter_sweep_results.iloc[i, len(RESULTS_COLUMNS) + 1:] = \ self.pct_female_matrix.tail(1).iloc[0, 1:] self.parameter_sweep_results = parameter_sweep_results # BEGIN BLOCK # Reset the models to original settings. This is very important, # otherwise settings from the parameter sweep will contaminate # subsequent runs of the model. self.load_baseline_data_mgmt() # END BLOCK return (0)
def __neg__(self) -> bool: return operator.neg(self.size)
def run_model(self): ## initialize data structure self.res = np.zeros([self.duration, 12], dtype=np.float32) self.res[0, 0] = self.nf1 self.res[0, 1] = self.nf2 self.res[0, 2] = self.nf3 self.res[0, 3] = self.nm1 self.res[0, 4] = self.nm2 self.res[0, 5] = self.nm3 self.res[0, 6] = self.vac3 self.res[0, 7] = self.vac2 self.res[0, 8] = self.vac1 self.res[0, 9] = self.female_promotion_probability_1 self.res[0, 10] = self.female_promotion_probability_2 self.res[0, 11] = np.float32( sum(list([self.nf1, self.nf2, self.nf3])) / sum( list([ self.nf1, self.nf2, self.nf3, self.nm1, self.nm2, self.nm3 ]))) hiring_rate_female_level_1 = self.bf1 hiring_rate_female_level_2 = self.bf2 hiring_rate_female_level_3 = self.bf3 attrition_rate_female_level_1 = self.df1 attrition_rate_female_level_2 = self.df2 attrition_rate_female_level_3 = self.df3 attrition_rate_male_level_1 = self.dm1 attrition_rate_male_level_2 = self.dm2 attrition_rate_male_level_3 = self.dm3 probability_of_outside_hire_level_3 = self.phire3 probability_of_outside_hire_level_2 = self.phire2 male_promotion_probability_1_2 = self.male_promotion_probability_1 male_promotion_probability_2_3 = self.male_promotion_probability_2 for i in range(1, self.duration): # initialize variables for this iteration prev_number_of_females_level_1 = self.res[i - 1, 0] prev_number_of_females_level_2 = self.res[i - 1, 1] prev_number_of_females_level_3 = self.res[i - 1, 2] prev_number_of_males_level_1 = self.res[i - 1, 3] prev_number_of_males_level_2 = self.res[i - 1, 4] prev_number_of_males_level_3 = self.res[i - 1, 5] prev_number_of_vacancies_level_3 = self.res[i - 1, 6] prev_number_of_vacancies_level_2 = self.res[i - 1, 7] prev_number_of_vacancies_level_1 = self.res[i - 1, 8] prev_promotion_rate_female_level_1 = self.female_promotion_probability_1 prev_promotion_rate_female_level_2 = self.female_promotion_probability_2 if np.isnan(prev_promotion_rate_female_level_1): prev_promotion_rate_female_level_1 = 0 if np.isnan(prev_promotion_rate_female_level_2): prev_promotion_rate_female_level_2 = 0 prev_gender_proportion_of_department = np.float32( sum( list([ prev_number_of_females_level_1, prev_number_of_females_level_2, prev_number_of_females_level_3 ])) / (sum( list([ prev_number_of_females_level_1, prev_number_of_females_level_2, prev_number_of_females_level_3, prev_number_of_males_level_1, prev_number_of_males_level_2, prev_number_of_males_level_3 ])))) # Process Model # first both female and males leave the department according to binomial probability. female_attrition_level_3 = binomial(prev_number_of_females_level_3, attrition_rate_female_level_3) male_attrition_level_3 = binomial(prev_number_of_males_level_3, attrition_rate_male_level_3) # the departures create a set of vacancies. These vacancies are the basis for new hiring total_vacancies_3 = female_attrition_level_3 + male_attrition_level_3 # women are hired first and then men hiring_female_3 = binomial( total_vacancies_3, probability_of_outside_hire_level_3 * hiring_rate_female_level_3) hiring_male_3 = binomial( max(0, total_vacancies_3 - hiring_female_3), probability_of_outside_hire_level_3 * (1 - hiring_rate_female_level_3)) # promotion after hiring level 3 promotions_female_after_hiring_2_3 = binomial( max(prev_number_of_females_level_2, total_vacancies_3 - hiring_female_3 - hiring_male_3), prev_promotion_rate_female_level_2) # formula should read that either the remaining vacancies or the previous number of males--whichever is smallest. But need to make sure no negative values. promotions_of_males_level_2_3 = binomial( min( prev_number_of_males_level_2, max( 0, total_vacancies_3 - hiring_female_3 - hiring_male_3 - promotions_female_after_hiring_2_3)), male_promotion_probability_2_3) assert (promotions_of_males_level_2_3 >= 0), "promotions_of_males_level_2_3 is negative" # attrition at level 2 - either people leave from attrition or promotion female_attrition_level_2 = binomial( max( 0, prev_number_of_females_level_2 - promotions_female_after_hiring_2_3), attrition_rate_female_level_2) male_attrition_level_2 = binomial( max( 0, prev_number_of_males_level_2 - promotions_of_males_level_2_3), attrition_rate_male_level_2) # the departures create a set of vacancies. These vacancies are the basis for new hiring total_vacancies_2 = sum( list([ female_attrition_level_2, male_attrition_level_2, promotions_female_after_hiring_2_3, promotions_of_males_level_2_3 ])) assert (total_vacancies_2 >= 0), "total vacancies level 2 is less than zero" # TODO set to hiring first hiring_female_2 = binomial( max(0, total_vacancies_2), probability_of_outside_hire_level_2 * hiring_rate_female_level_2) hiring_male_2 = binomial( max(0, total_vacancies_2 - hiring_female_2), 1 - probability_of_outside_hire_level_2 * hiring_rate_female_level_2) promotions_of_females_level_1_2 = binomial( min( 0, min(prev_number_of_females_level_1, total_vacancies_2 - hiring_female_2 - hiring_male_2)), prev_promotion_rate_female_level_1) promotions_of_males_level_1_2 = binomial( min( 0, min( prev_number_of_males_level_1, total_vacancies_2 - hiring_female_2 - hiring_male_2 - promotions_of_females_level_1_2)), male_promotion_probability_1_2) assert (promotions_of_females_level_1_2 >= 0), "promotions of females level 1-2 is negative" assert (promotions_of_males_level_1_2 >= 0), "promotions of males level 1-2 is negative" total_hiring_2 = hiring_female_2 + hiring_male_2 ## Level 1 female_attrition_level_1 = binomial( max( 0, prev_number_of_females_level_1 - promotions_of_females_level_1_2), attrition_rate_female_level_1) male_attrition_level_1 = binomial( max(0, prev_number_of_males_level_1), attrition_rate_male_level_1) total_vacancies_1 = sum( list([ female_attrition_level_1, male_attrition_level_1, promotions_of_females_level_1_2, promotions_of_males_level_1_2 ])) hiring_female_1 = binomial(total_vacancies_1, hiring_rate_female_level_1) hiring_male_1 = binomial( max(0, total_vacancies_1 - hiring_female_1), 1 - hiring_rate_female_level_1) # Write state variables to array and move to next iteration self.res[i, 0] = number_of_females_level_1 = sum( list([ prev_number_of_females_level_1, neg(female_attrition_level_1), neg(promotions_of_females_level_1_2), hiring_female_1 ])) self.res[i, 1] = number_of_females_level_2 = max( 0, sum( list([ prev_number_of_females_level_2, neg(female_attrition_level_2), neg(promotions_female_after_hiring_2_3), promotions_of_females_level_1_2, hiring_female_2 ]))) self.res[i, 2] = number_of_females_level_3 = sum( list([ prev_number_of_females_level_3, neg(female_attrition_level_3), promotions_female_after_hiring_2_3, hiring_female_3 ])) self.res[i, 3] = number_of_males_level_1 = sum( list([ prev_number_of_males_level_1, neg(male_attrition_level_1), neg(promotions_of_males_level_1_2), hiring_male_1 ])) self.res[i, 4] = number_of_males_level_2 = sum( list([ prev_number_of_males_level_2, neg(male_attrition_level_2), neg(promotions_of_males_level_2_3), promotions_of_males_level_1_2, hiring_male_2 ])) self.res[i, 5] = number_of_males_level_3 = sum( list([ prev_number_of_males_level_3, neg(male_attrition_level_3), promotions_of_males_level_2_3, hiring_male_3 ])) self.res[i, 6] = number_of_vacancies_level_3 = sum( list([male_attrition_level_3, female_attrition_level_3])) self.res[i, 7] = number_of_vacancies_level_2 = sum( list([ male_attrition_level_2, female_attrition_level_2, promotions_female_after_hiring_2_3, promotions_of_males_level_2_3 ])) self.res[i, 8] = number_of_vacancies_level_1 = sum( list([ male_attrition_level_1, female_attrition_level_1, promotions_of_males_level_1_2, promotions_of_females_level_1_2 ])) self.res[ i, 9] = promotion_rate_female_level_1 = self.female_promotion_probability_1 self.res[ i, 10] = promotion_rate_women_level_2 = self.female_promotion_probability_2 self.res[i, 11] = gender_proportion_of_department = np.float32( truediv( sum( list([ number_of_females_level_1, number_of_females_level_2, number_of_females_level_3 ])), sum( list([ number_of_females_level_1, number_of_females_level_2, number_of_females_level_3, number_of_males_level_1, number_of_males_level_2, number_of_males_level_3 ])))) # print(self.res[i,:]) ## Print Data matrix df_ = pd.DataFrame(self.res) df_.columns = [ 'f1', 'f2', 'f3', 'm1', 'm2', 'm3', 't3', 't2', 't1', 'prom1', 'prom2', 'gendprop' ] recarray_results = df_.to_records(index=True) self.run = recarray_results return recarray_results
#// 只能用于整数 #浮点数只能返回一位小数0 print operator.floordiv(9, 4) print operator.floordiv(9.04, 4) #除数取余 同a%b print operator.mod(9, 4) #精确除法 print operator.truediv(9.04, 4) #绝对值 print operator.abs(-10) #取反 相当于 -a print operator.neg(-10) #取反 相当于 ~a #~a = (-a)-1 #~10 = -11 #~(-10) = 9 print operator.inv(10) print operator.inv(-10) print operator.invert(10) print operator.invert(-10) #乘方 同a**b print operator.pow(2, 3) #向左移位 同<< 相当于乘以2的相应次方 print operator.lshift(3, 2)
def test_metrics_neg(): first_metric = DummyMetric(1) final_neg = neg(first_metric) assert isinstance(final_neg, CompositionalMetric) assert torch.allclose(tensor(-1), final_neg.compute())
def test_neg_array(self, xp, dtype): a = testing.shaped_arange((2, 3), xp, dtype) return operator.neg(a)
def op_neg(x): return _op.neg(x)
def test_neg_zerodim(self, xp, dtype): a = xp.array(-2, dtype) return operator.neg(a)
def __neg__(self): return vec(operator.neg(self.x), operator.neg(self.y))
print(" bit or ", oct(10), oct(4)) print(" | : ", 10 | 4) print(" or_(a, b) : ", op.or_(10,4)) print("x.__or__(y) : ", (10).__or__(4)) print(" bit xor ", oct(10), oct(6)) print(" ^ : ", 10 ^ 6) print(" xor(a, b) : ", op.xor(10,6)) print("x.__xor__(y) : ", (10).__xor__(6)) print(" bit inversion ", oct(10)) print(" ~ : ", ~(10) ) print(" invert(a) : ", op.invert(10)) print("x.__invert__(y) : ", (10).__invert__()) print(" negative : ", -(10)) print(" neg(a) : ", op.neg((10))) print("a.__neg__ : ", (10).__neg__()) print(" positive : ", -(-10), +(10)) print(" pos(a) : ", op.pos((10))) print("a.__pos__ : ", (10).__pos__()) print(" right hand operator ") print(" x + y ", (8).__radd__(2)) print(" x + y ", (2).__add__(8)) print(" x ** y ", (3).__rpow__(2)) print(" x ** y ", (2).__pow__(3)) x = True y = False print('x and y is',x and y)
def test_neg(self): self.failUnless(operator.neg(5) == -5) self.failUnless(operator.neg(-5) == 5) self.failUnless(operator.neg(0) == 0) self.failUnless(operator.neg(-0) == 0)
def __neg__(self): return neg(self)
def neg_abs(num): return neg(abs(num))
def operator_neg(size): a = Array(size, 'int32') for i in range(size): a[i] = nb_types.int32(i) return operator.neg(a)
def __neg__(self) -> T: return operator.neg(object.__getattribute__(self, "_obj"))
def dom_j_up(csp, queue): return SortedSet(queue, key=lambda t: neg(len(csp.curr_domains[t[1]])))
def __neg__ (self): return Euler([operator.neg(c) for c in self]) def __pos__ (self): return Euler([operator.pos(c) for c in self])
def run_model(self): ## initialize data structure self.res = np.zeros([self.duration, 12], dtype=np.float32) self.res[0, 0] = self.nf1 self.res[0, 1] = self.nf2 self.res[0, 2] = self.nf3 self.res[0, 3] = self.nm1 self.res[0, 4] = self.nm2 self.res[0, 5] = self.nm3 self.res[0, 6] = self.vac3 self.res[0, 7] = self.vac2 self.res[0, 8] = self.vac1 self.res[0, 9] = self.female_promotion_probability_1 self.res[0, 10] = self.female_promotion_probability_2 self.res[0, 11] = np.float32( sum(list([self.nf1, self.nf2, self.nf3])) / sum( list([ self.nf1, self.nf2, self.nf3, self.nm1, self.nm2, self.nm3 ]))) hiring_rate_female_level_1 = self.bf1 hiring_rate_female_level_2 = self.bf2 hiring_rate_female_level_3 = self.bf3 attrition_rate_female_level_1 = self.df1 attrition_rate_female_level_2 = self.df2 attrition_rate_female_level_3 = self.df3 attrition_rate_male_level_1 = self.dm1 attrition_rate_male_level_2 = self.dm2 attrition_rate_male_level_3 = self.dm3 probability_of_outside_hire_level_3 = self.phire3 probability_of_outside_hire_level_2 = self.phire2 male_promotion_probability_1_2 = self.male_promotion_probability_1 male_promotion_probability_2_3 = self.male_promotion_probability_2 for i in range(1, self.duration): # initialize variables for this iteration prev_number_of_females_level_1 = self.res[i - 1, 0] prev_number_of_females_level_2 = self.res[i - 1, 1] prev_number_of_females_level_3 = self.res[i - 1, 2] prev_number_of_males_level_1 = self.res[i - 1, 3] prev_number_of_males_level_2 = self.res[i - 1, 4] prev_number_of_males_level_3 = self.res[i - 1, 5] prev_number_of_vacancies_level_3 = self.res[i - 1, 6] prev_number_of_vacancies_level_2 = self.res[i - 1, 7] prev_number_of_vacancies_level_1 = self.res[i - 1, 8] prev_promotion_rate_female_level_1 = self.female_promotion_probability_1 prev_promotion_rate_female_level_2 = self.female_promotion_probability_2 if np.isnan(prev_promotion_rate_female_level_1): prev_promotion_rate_female_level_1 = 0 if np.isnan(prev_promotion_rate_female_level_2): prev_promotion_rate_female_level_2 = 0 prev_gender_proportion_of_department = np.float32( sum( list([ prev_number_of_females_level_1, prev_number_of_females_level_2, prev_number_of_females_level_3 ])) / (sum( list([ prev_number_of_females_level_1, prev_number_of_females_level_2, prev_number_of_females_level_3, prev_number_of_males_level_1, prev_number_of_males_level_2, prev_number_of_males_level_3 ])))) # Process Model # first both female and males leave the department according to binomial probability. female_attrition_level_3 = binomial(prev_number_of_females_level_3, attrition_rate_female_level_3) male_attrition_level_3 = binomial(prev_number_of_males_level_3, attrition_rate_male_level_3) # the departures create a set of vacancies. These vacancies are the basis for new hiring total_vacancies_3 = female_attrition_level_3 + male_attrition_level_3 # women are hired first and then men hiring_female_3 = binomial( total_vacancies_3, probability_of_outside_hire_level_3 * hiring_rate_female_level_3) hiring_male_3 = binomial( max(0, total_vacancies_3 - hiring_female_3), probability_of_outside_hire_level_3 * (1 - hiring_rate_female_level_3)) total_hiring_3 = hiring_female_3 + hiring_male_3 # level 3 vacancies that are not filled by new hires create opportunities # for promotion from level 2. Again women are promoted first and men second. # Also note the error trap that if we try to promote more professors from # level 2 than there exist at level 2, then we will prevent this from happening. vacancies_remaining_after_hiring_3 = total_vacancies_3 - total_hiring_3 potential_promotions_after_hiring_3 = max( 0, vacancies_remaining_after_hiring_3) promotions_of_females_level_2_3 = binomial( min(potential_promotions_after_hiring_3, prev_number_of_females_level_2), prev_promotion_rate_female_level_2) promotions_of_males_level_2_3 = binomial( max( 0, min( potential_promotions_after_hiring_3 - promotions_of_females_level_2_3, prev_number_of_males_level_2)), male_promotion_probability_2_3) # attrition at level 2 - either people leave from attrition or promotion female_attrition_level_2 = binomial( max( 0, prev_number_of_females_level_2 - promotions_of_females_level_2_3), attrition_rate_female_level_2) male_attrition_level_2 = binomial( max( 0, prev_number_of_males_level_2 - promotions_of_males_level_2_3), attrition_rate_male_level_2) # the departures create a set of vacancies. These vacancies are the basis for new hiring total_vacancies_2 = sum( list([ female_attrition_level_2, male_attrition_level_2, promotions_of_females_level_2_3, promotions_of_males_level_2_3 ])) hiring_female_2 = binomial( max(0, total_vacancies_2), probability_of_outside_hire_level_2 * hiring_rate_female_level_2) hiring_male_2 = binomial( max(0, total_vacancies_2 - hiring_female_2), probability_of_outside_hire_level_2 * (1 - hiring_rate_female_level_2)) total_hiring_2 = hiring_female_2 + hiring_male_2 vacancies_remaining_after_hiring_2 = total_vacancies_2 - total_hiring_2 potential_promotions_after_hiring_2 = max( 0, vacancies_remaining_after_hiring_2) promotions_of_females_level_1_2 = binomial( max( 0, min(potential_promotions_after_hiring_2, prev_number_of_females_level_1)), prev_promotion_rate_female_level_1) promotions_of_males_level_1_2 = binomial( max( 0, min( potential_promotions_after_hiring_2 - promotions_of_females_level_1_2, prev_number_of_males_level_1)), male_promotion_probability_1_2) ## Level 1 female_attrition_level_1 = binomial( max( 0, prev_number_of_females_level_1 - promotions_of_females_level_1_2), attrition_rate_female_level_1) male_attrition_level_1 = binomial( max( 0, prev_number_of_males_level_1 - promotions_of_males_level_1_2), attrition_rate_male_level_1) total_vacancies_1 = sum( list([ female_attrition_level_1, male_attrition_level_1, promotions_of_females_level_1_2, promotions_of_males_level_1_2 ])) hiring_female_1 = binomial(max(0, total_vacancies_1), hiring_rate_female_level_1) hiring_male_1 = binomial( max(0, total_vacancies_1 - hiring_female_1), 1 - hiring_rate_female_level_1) # Write state variables to array and move to next iteration self.res[i, 0] = number_of_females_level_1 = sum( list([ prev_number_of_females_level_1, neg(female_attrition_level_1), neg(promotions_of_females_level_1_2), hiring_female_1 ])) assert (number_of_females_level_1 >= 0), "negative number of females 1" self.res[i, 1] = number_of_females_level_2 = max( 0, sum( list([ prev_number_of_females_level_2, neg(female_attrition_level_2), neg(promotions_of_females_level_2_3), promotions_of_females_level_1_2, hiring_female_2 ]))) self.res[i, 2] = number_of_females_level_3 = sum( list([ prev_number_of_females_level_3, neg(female_attrition_level_3), promotions_of_females_level_2_3, hiring_female_3 ])) self.res[i, 3] = number_of_males_level_1 = sum( list([ prev_number_of_males_level_1, neg(male_attrition_level_1), neg(promotions_of_males_level_1_2), hiring_male_1 ])) self.res[i, 4] = number_of_males_level_2 = sum( list([ prev_number_of_males_level_2, neg(male_attrition_level_2), neg(promotions_of_males_level_2_3), promotions_of_males_level_1_2, hiring_male_2 ])) self.res[i, 5] = number_of_males_level_3 = sum( list([ prev_number_of_males_level_3, neg(male_attrition_level_3), promotions_of_males_level_2_3, hiring_male_3 ])) self.res[i, 6] = number_of_vacancies_level_3 = sum( list([male_attrition_level_3, female_attrition_level_3])) self.res[i, 7] = number_of_vacancies_level_2 = sum( list([ male_attrition_level_2, female_attrition_level_2, promotions_of_females_level_2_3, promotions_of_males_level_2_3 ])) self.res[i, 8] = number_of_vacancies_level_1 = sum( list([ male_attrition_level_1, female_attrition_level_1, promotions_of_males_level_1_2, promotions_of_females_level_1_2 ])) self.res[i, 9] = promotion_rate_female_level_1 = np.float32( number_of_females_level_1 / sum(list([number_of_females_level_1, number_of_males_level_1 ]))) self.res[i, 10] = promotion_rate_women_level_2 = np.float32( number_of_females_level_2 / sum(list([number_of_females_level_2, number_of_males_level_2 ]))) self.res[i, 11] = gender_proportion_of_department = np.float32( truediv( sum( list([ number_of_females_level_1, number_of_females_level_2, number_of_females_level_3 ])), sum( list([ number_of_females_level_1, number_of_females_level_2, number_of_females_level_3, number_of_males_level_1, number_of_males_level_2, number_of_males_level_3 ])))) # print(self.res[i,:]) ## Print Data matrix df_ = pd.DataFrame(self.res) df_.columns = [ 'f1', 'f2', 'f3', 'm1', 'm2', 'm3', 't3', 't2', 't1', 'prom1', 'prom2', 'gendprop' ] # print(df_) recarray_results = df_.to_records(index=True) self.run = recarray_results return recarray_results
def __rsub__(self, other_obj): self_neg = operator.neg(self) return operator.add(self_neg, other_obj)
def __neg__(self): return Vec2d(operator.neg(self.x), operator.neg(self.y))
class TVMScriptParser(Transformer): """Synr AST visitor pass which finally lowers to TIR. Notes for Extension ------------------- 1. To support a new type of AST node, add a function transform_xxx(). 2. To support new functions, add the function to the appropriate registry: We divide allowed function calls in TVM script into 3 categories, intrin, scope_handler and special_stmt. 1. intrin functions are low level functions like mod, load, and constants. They correspond to a tir `IRNode`. They must have a return value. The user can register intrin functions for the parser to use. 2. scope_handler functions have no return value. They take two arguments: the parser and the AST node. scope_handler functions are used in with and for statements. 3. special_stmt functions handle cases that do not have a corresponding tir `IRNode`. These functions take the parser and the AST node as arguments and may return a value. When visiting a Call node, we check the special_stmt registry first. If no registered function is found, we then check the intrin registry. When visiting With node, we check the with_scope registry. When visiting For node, we check the for_scope registry. """ _binop_maker = { ast.BuiltinOp.Add: tvm.tir.Add, ast.BuiltinOp.Sub: tvm.tir.Sub, ast.BuiltinOp.Mul: tvm.tir.Mul, ast.BuiltinOp.Div: tvm.tir.Div, ast.BuiltinOp.FloorDiv: tvm.tir.FloorDiv, ast.BuiltinOp.Mod: tvm.tir.FloorMod, ast.BuiltinOp.BitOr: lambda lhs, rhs, span: operator.or_(lhs, rhs), ast.BuiltinOp.BitAnd: lambda lhs, rhs, span: operator.and_(lhs, rhs), ast.BuiltinOp.BitXor: lambda lhs, rhs, span: operator.xor(lhs, rhs), ast.BuiltinOp.GT: tvm.tir.GT, ast.BuiltinOp.GE: tvm.tir.GE, ast.BuiltinOp.LT: tvm.tir.LT, ast.BuiltinOp.LE: tvm.tir.LE, ast.BuiltinOp.Eq: tvm.tir.EQ, ast.BuiltinOp.NotEq: tvm.tir.NE, ast.BuiltinOp.And: tvm.tir.And, ast.BuiltinOp.Or: tvm.tir.Or, } _unaryop_maker = { ast.BuiltinOp.USub: lambda rhs, span: operator.neg(rhs), ast.BuiltinOp.Invert: lambda rhs, span: operator.invert(rhs), ast.BuiltinOp.Not: tvm.tir.Not, } def __init__(self, base_lienno, tir_namespace): self.context = None self.base_lineno = base_lienno self.current_lineno = 0 self.current_col_offset = 0 self.tir_namespace = tir_namespace self.meta = None def init_function_parsing_env(self): """Initialize function parsing environment""" self.context = ContextMaintainer(self.report_error) # scope emitter def init_meta(self, meta_dict): if meta_dict is not None: self.meta = tvm.ir.load_json(json.dumps(meta_dict)) def transform(self, node): """Generic transformation for visiting the AST. Dispatches to `transform_ClassName` for the appropriate ClassName.""" old_lineno, old_col_offset = self.current_lineno, self.current_col_offset if hasattr(node, "lineno"): self.current_lineno = self.base_lineno + node.lineno - 1 if hasattr(node, "col_offset"): self.current_col_offset = node.col_offset method = "transform_" + node.__class__.__name__ visitor = getattr(self, method, self.generic_visit) transform_res = visitor(node) self.current_lineno, self.current_col_offset = old_lineno, old_col_offset return transform_res def match_tir_namespace(self, identifier: str) -> bool: """Check if the namespace is equal to tvm.script.tir""" return identifier in self.tir_namespace def report_error(self, message: str, span: Union[ast.Span, tvm.ir.Span]): """Report an error occuring at a location. This just dispatches to synr's DiagnosticContext. Parameters ---------- message : str Error message span : Union[synr.ast.Span, tvm.ir.Span】 Location of the error """ if isinstance(span, tvm.ir.Span): span = synr_span_from_tvm(span) self.error(message, span) def parse_body(self, parent): """Parse remaining statements in this scope. Parameters ---------- parent : synr.ast.Node Parent node of this scope. Errors will be reported here. """ body = [] spans = [] stmt = parent while len(self.context.node_stack[-1]) > 0: stmt = self.context.node_stack[-1].pop() spans.append(stmt.span) res = self.transform(stmt) if res is not None: body.append(res) if len(body) == 0: self.report_error( "Expected another statement at the end of this block. Perhaps you " "used a concise statement and forgot to include a body afterwards.", stmt.span, ) else: return (tvm.tir.SeqStmt(body, tvm_span_from_synr(ast.Span.union(spans))) if len(body) > 1 else body[0]) def parse_arg_list(self, func, node_call): """Match the arguments of a function call in the AST to the required arguments of the function. This handles positional arguments, positional arguments specified by name, keyword arguments, and varargs. Parameters ---------- func : Function The function that provides the signature node_call: ast.Call The AST call node that calls into the function. Returns ------- arg_list : list The parsed positional argument. """ assert isinstance(node_call, ast.Call) # collect arguments args = [self.transform(arg) for arg in node_call.params] kw_args = { self.transform(k): self.transform(v) for k, v in node_call.keyword_params.items() } # get the name and parameter list of func if isinstance(func, (Intrin, ScopeHandler, SpecialStmt)): func_name, param_list = func.signature() else: self.report_error( "Internal Error: function must be of type Intrin, ScopeHandler or SpecialStmt, " f"but it is {type(func).__name__}", node_call.span, ) # check arguments and parameter list and get a list of arguments reader = CallArgumentReader(func_name, args, kw_args, self, node_call) pos_only, kwargs, varargs = param_list internal_args = list() for i, arg_name in enumerate(pos_only): internal_args.append(reader.get_pos_only_arg(i + 1, arg_name)) for i, arg_info in enumerate(kwargs): arg_name, default = arg_info internal_args.append( reader.get_kwarg(i + 1 + len(pos_only), arg_name, default=default)) if varargs is not None: internal_args.extend( reader.get_varargs(len(pos_only) + len(kwargs) + 1)) elif len(args) + len(kw_args) > len(pos_only) + len(kwargs): self.report_error( "Arguments mismatched. " + f"Expected {len(pos_only) + len(kwargs)} args but got " + f"{len(args) + len(kw_args)}", node_call.span, ) return internal_args def parse_type(self, type_node, parent): """Parse a type annotation. We require the parent object to the type so that we have a place to report the error message if the type does not exist. """ if type_node is None: self.report_error("A type annotation is required", parent.span) res_type = self.transform(type_node) return tvm.ir.TupleType( []) if res_type is None else res_type.evaluate() def generic_visit(self, node): """Fallback visitor if node type is not handled. Reports an error.""" self.report_error( type(node).__name__ + " AST node is not supported", node.span) def transform_Module(self, node): """Module visitor Right now, we only support two formats for TVM Script. Example ------- 1. Generate a PrimFunc (If the code is printed, then it may also contain metadata) .. code-block:: python import tvm @tvm.script def A(...): ... # returns a PrimFunc func = A 2. Generate an IRModule .. code-block:: python import tvm @tvm.script.ir_module class MyMod(): @T.prim_func def A(...): ... @T.prim_func def B(...): ... __tvm_meta__ = ... # returns an IRModule mod = MyMod """ if len(node.funcs) == 1: return self.transform(next(iter(node.funcs.values()))) elif len(node.func) == 0: self.report_error( "You must supply at least one class or function definition", node.span) else: self.report_error( "Only one-function, one-class or function-with-meta source code is allowed", ast.Span.union([x.span for x in list(node.funcs.values())[1:]]), ) def transform_Class(self, node): """Class definition visitor. A class can have multiple function definitions and a single :code:`__tvm_meta__` statement. Each class corresponds to a single :code:`IRModule`. Example ------- .. code-block:: python @tvm.script.ir_module class MyClass: __tvm_meta__ = {} def A(): T.evaluate(0) """ if len(node.assignments) == 1: if not (len(node.assignments[0].lhs) == 1 and isinstance(node.assignments[0].lhs[0], ast.Var) and node.assignments[0].lhs[0].id.name == "__tvm_meta__"): self.report_error( "The only top level assignments allowed are `__tvm_meta__ = ...`", node.assignments[0].span, ) self.init_meta(MetaUnparser().do_transform( node.assignments[0].rhs, self._diagnostic_context)) elif len(node.assignments) > 1: self.report_error( "Only a single top level `__tvm_meta__` is allowed", ast.Span.union([x.span for x in node.assignments[1:]]), ) return IRModule({ GlobalVar(name): self.transform(func) for name, func in node.funcs.items() }) def transform_Function(self, node): """Function definition visitor. Each function definition is translated to a single :code:`PrimFunc`. There are a couple restrictions on TVM Script functions: 1. Function arguments must have their types specified. 2. The body of the function can contain :code:`func_attr` to specify attributes of the function (like it's name). 3. The body of the function can also contain multiple :code:`buffer_bind`s, which give shape and dtype information to arguments. 4. Return statements are implicit. Example ------- .. code-block:: python @T.prim_func def my_function(x: T.handle): # 1. Argument types T.func_attr({"global_symbol": "mmult"}) # 2. Function attributes X_1 = tir.buffer_bind(x, [1024, 1024]) # 3. Buffer binding T.evaluate(0) # 4. This function returns 0 """ def check_decorator(decorators: List[ast.Expr]) -> bool: """Check the decorator is `T.prim_func""" if len(decorators) != 1: return False d: ast.Expr = decorators[0] return (isinstance(d, ast.Attr) and isinstance(d.object, ast.Var) and self.match_tir_namespace(d.object.id.name) and d.field.name == "prim_func") self.init_function_parsing_env() self.context.enter_scope(nodes=node.body.stmts) # add parameters of function for arg in node.params: arg_var = tvm.te.var(arg.name, self.parse_type(arg.ty, arg)) self.context.update_symbol(arg.name, arg_var, node) self.context.func_params.append(arg_var) if not check_decorator(node.decorators): self.report_error( "All functions should be decorated by `T.prim_func`", node.span, ) # fetch the body of root block body = self.parse_body(node.body) # return a tir.PrimFunc dict_attr = self.context.func_dict_attr ret_type = self.parse_type(node.ret_type, node) if node.ret_type is not None else None func = tvm.tir.PrimFunc( self.context.func_params, body, ret_type, buffer_map=self.context.func_buffer_map, attrs=tvm.ir.make_node("DictAttrs", **dict_attr) if dict_attr else None, span=tvm_span_from_synr(node.span), ) # New Scope : Implicit root block # Each function contains an implicit root block in TensorIR, # so here we need a block scope for it. # If the PrimFunc is not a TensorIR func (e.g. TE scheduled func or low-level func), # the root block will not be added. The logic to add root block is in `_ffi_api.Complete` # Fix the PrimFunc # 1. generate root block if necessary # 2. generate surrounding loops for blocks if necessary func = call_with_error_reporting( self.report_error, node.span, _ffi_api.Complete, func, self.context.root_alloc_buffers, ) self.context.exit_scope() return func def transform_Lambda(self, node): """Lambda visitor Return an array of input parameters and the transformed lambda body. """ self.context.enter_scope(nodes=[node.body]) # add parameters of the lambda arg_vars = [] for arg in node.params: arg_var = tvm.te.var(arg.name) arg_vars.append(arg_var) self.context.update_symbol(arg.name, arg_var, node) # the body of a lambda must be an expr if not isinstance(node.body, ast.Expr): self.report_error("The body of a lambda must be an expression", node.span) # transform the body of the lambda body = self.transform(node.body) self.context.exit_scope() return arg_vars, body def transform_Assign(self, node): """Assign visitor AST abstract grammar: Assign(expr* targets, expr value, string? type_comment) By now 3 patterns of Assign is supported: 1. special stmts with return value 1.1 Buffer = T.match_buffer()/T.buffer_decl() 1.2 Var = T.var() 1.3 Var = T.env_thread() 2. (BufferStore) Buffer[PrimExpr, PrimExpr, ..., PrimExpr] = PrimExpr 3. (Store) Var[PrimExpr] = PrimExpr 4. with scope handlers with concise scoping and var def 4.1 var = T.allocate() """ if isinstance(node.rhs, ast.Call): # Pattern 1 & Pattern 4 func = self.transform(node.rhs.func_name) if isinstance(func, WithScopeHandler): if not func.concise_scope or not func.def_symbol: self.report_error( "with scope handler " + func.signature()[0] + " is not suitable here", node.rhs.span, ) # Pattern 4 arg_list = self.parse_arg_list(func, node.rhs) func.enter_scope(node, self.context, arg_list, node.rhs.func_name.span) func.body = self.parse_body(node) return func.exit_scope(node, self.context, arg_list, node.rhs.func_name.span) elif isinstance(func, SpecialStmt): # Pattern 1 arg_list = self.parse_arg_list(func, node.rhs) func.handle(node, self.context, arg_list, node.rhs.func_name.span) return self.parse_body(node) else: value = self.transform(node.rhs) if len(node.lhs) == 1 and not isinstance(node.lhs[0], ast.Var): # This is a little confusing because it only is true when # we have taken this branch. We might need to clarify what # exectly is allowed in Assignments in tvmscript. self.report_error( "Left hand side of assignment must be an unqualified variable", node.span, ) ast_var = node.lhs[0] var = tvm.te.var( ast_var.id.name, self.parse_type(node.ty, ast_var), span=tvm_span_from_synr(ast_var.span), ) self.context.update_symbol(var.name, var, node) body = self.parse_body(node) self.context.remove_symbol(var.name) return tvm.tir.LetStmt(var, value, body, span=tvm_span_from_synr(node.span)) self.report_error("Unsupported Assign stmt", node.span) def transform_SubscriptAssign(self, node): """Visitor for statements of the form :code:`x[1] = 2`.""" symbol = self.transform(node.params[0]) indexes = self.transform(node.params[1]) rhs = self.transform(node.params[2]) rhs_span = tvm_span_from_synr(node.params[2].span) if isinstance(symbol, tvm.tir.Buffer): # BufferStore return tvm.tir.BufferStore( symbol, tvm.runtime.convert(rhs, span=rhs_span), indexes, span=tvm_span_from_synr(node.span), ) else: if len(indexes) != 1: self.report_error( f"Store is only allowed with one index, but {len(indexes)} were provided.", node.params[1].span, ) # Store return tvm.tir.Store( symbol, tvm.runtime.convert(rhs, span=rhs_span), indexes[0], tvm.runtime.convert(True, span=tvm_span_from_synr(node.span)), span=tvm_span_from_synr(node.span), ) def transform_Assert(self, node): """Assert visitor Pattern corresponds to concise mode of :code:`with T.Assert()`. """ condition = self.transform(node.condition) if node.msg is None: self.report_error("Assert statements must have an error message.", node.span) message = self.transform(node.msg) body = self.parse_body(node) return tvm.tir.AssertStmt(condition, tvm.runtime.convert(message), body, span=tvm_span_from_synr(node.span)) def transform_For(self, node): """For visitor AST abstract grammar: For(expr target, expr iter, stmt* body, stmt* orelse, string? type_comment) By now 1 pattern of For is supported: 1. for scope handler for name in T.serial()/T.parallel()/T.vectorized()/T.unroll()/range()/ T.grid()/T.thread_binding() """ if not isinstance(node.rhs, ast.Call): self.report_error("The loop iterator should be a function call.", node.rhs.span) func = self.transform(node.rhs.func_name) if not isinstance(func, ForScopeHandler): self.report_error( "Only For scope handlers can be used in a for statement.", node.rhs.func_name.span) # prepare for new for scope old_lineno, old_col_offset = self.current_lineno, self.current_col_offset self.current_lineno = node.span.start_line self.current_col_offset = node.span.start_column self.context.enter_scope(nodes=node.body.stmts) # for scope handler process the scope arg_list = self.parse_arg_list(func, node.rhs) func.enter_scope(node, self.context, arg_list, node.rhs.func_name.span) func.body = self.parse_body(node) res = func.exit_scope(node, self.context, arg_list, node.rhs.func_name.span) # exit the scope self.context.exit_scope() self.current_lineno, self.current_col_offset = old_lineno, old_col_offset return res def transform_While(self, node): """While visitor AST abstract grammar: While(expr condition, stmt* body) """ condition = self.transform(node.condition) # body self.context.enter_scope(nodes=node.body.stmts) body = self.parse_body(node) self.context.exit_scope() return tvm.tir.While(condition, body, span=tvm_span_from_synr(node.span)) def transform_With(self, node): """With visitor AST abstract grammar: With(withitem* items, stmt* body, string? type_comment) withitem = (expr context_expr, expr? optional_vars) By now 2 patterns of With is supported: 1. with scope handler with symbol def with T.block(*axes)/T.allocate() as targets: 2. with scope handler without symbol def with T.let()/T.Assert()/T.attr()/T.realize() """ if not isinstance(node.rhs, ast.Call): self.report_error( "The context expression of a `with` statement should be a function call.", node.rhs.span, ) func = self.transform(node.rhs.func_name) if not isinstance(func, WithScopeHandler): self.report_error( f"Function {func} cannot be used in a `with` statement.", node.rhs.func_name.span) # prepare for new block scope old_lineno, old_col_offset = self.current_lineno, self.current_col_offset self.current_lineno = node.body.span.start_line self.current_col_offset = node.body.span.start_column self.context.enter_block_scope(nodes=node.body.stmts) # with scope handler process the scope arg_list = self.parse_arg_list(func, node.rhs) func.enter_scope(node, self.context, arg_list, node.rhs.func_name.span) func.body = self.parse_body(node) res = func.exit_scope(node, self.context, arg_list, node.rhs.func_name.span) # exit the scope self.context.exit_block_scope() self.current_lineno, self.current_col_offset = old_lineno, old_col_offset return res def transform_If(self, node): """If visitor AST abstract grammar: If(expr test, stmt* body, stmt* orelse) """ condition = self.transform(node.condition) # then body self.context.enter_scope(nodes=node.true.stmts) then_body = self.parse_body(node) self.context.exit_scope() # else body if len(node.false.stmts) > 0: self.context.enter_scope(nodes=node.false.stmts) else_body = self.parse_body(node) self.context.exit_scope() else: else_body = None return tvm.tir.IfThenElse(condition, then_body, else_body, span=tvm_span_from_synr(node.span)) def transform_Call(self, node): """Call visitor 3 different Call patterns are allowed: 1. Intrin representing a PrimExpr/IterVar 1.1 tir.int/uint/float8/16/32/64/floormod/floordiv/load/cast/ramp/broadcast/max 1.2 tir.range/reduce_axis/scan_axis/opaque_axis 2. tir.Op(dtype, ...) 3. other callable functions """ if isinstance(node.func_name, ast.Op): if node.func_name.name == ast.BuiltinOp.Subscript: return self.transform_Subscript(node) if node.func_name.name in self._binop_maker: lhs = self.transform(node.params[0]) rhs = self.transform(node.params[1]) return self._binop_maker[node.func_name.name]( lhs, rhs, span=tvm_span_from_synr(node.span)) if node.func_name.name in self._unaryop_maker: rhs = self.transform(node.params[0]) return self._unaryop_maker[node.func_name.name]( rhs, span=tvm_span_from_synr(node.span)) self.report_error(f"Unsupported operator {node.func_name.name}.", node.func_name.span) else: func = self.transform(node.func_name) if isinstance(func, Intrin) and not func.stmt: # pattern 1 arg_list = self.parse_arg_list(func, node) return call_with_error_reporting( self.report_error, node.func_name.span, func.handle, arg_list, node.func_name.span, ) else: args = [self.transform(arg) for arg in node.params] kw_args = { self.transform(k): self.transform(v) for k, v in node.keyword_params.items() } if isinstance(func, tvm.tir.op.Op): # pattern 2 return tvm.tir.Call(kw_args["dtype"], func, args, span=tvm_span_from_synr(node.span)) elif callable(func): # pattern 3 return func(*args, **kw_args) else: self.report_error( f"Function is neither callable nor a tvm.tir.op.Op (it is a {type(func)}).", node.func_name.span, ) def transform_UnassignedCall(self, node): """Visitor for statements that are function calls. This handles function calls that appear on thier own line like `tir.realize`. Examples -------- .. code-block:: python @T.prim_func def f(): A = T.buffer_decl([10, 10]) T.realize(A[1:2, 1:2], "") # This is an UnassignedCall A[1, 1] = 2 # This is also an UnassignedCall """ # Only allowed builtin operator that can be a statement is x[1] = 3 i.e. subscript assign. if isinstance(node.call.func_name, ast.Op): if node.call.func_name.name != ast.BuiltinOp.SubscriptAssign: self.report_error( "Binary and unary operators are not allowed as a statement", node.span) else: return self.transform_SubscriptAssign(node.call) # handle a regular function call func = self.transform(node.call.func_name) arg_list = self.parse_arg_list(func, node.call) if isinstance(func, tir.scope_handler.AssertHandler): self.report_error( "A standalone `T.Assert` is not allowed. Use `assert condition, message` " "instead.", node.call.func_name.span, ) if isinstance(func, Intrin): if func.stmt: return call_with_error_reporting( self.report_error, node.call.func_name.span, func.handle, arg_list, node.call.func_name.span, ) else: self.report_error( f"This intrinsic cannot be used as a statement.", node.call.span) elif isinstance(func, WithScopeHandler ) and func.concise_scope and not func.def_symbol: func.enter_scope(node, self.context, arg_list, node.call.func_name.span) func.body = self.parse_body(node) return func.exit_scope(node, self.context, arg_list, node.call.func_name.span) elif isinstance(func, SpecialStmt) and not func.def_symbol: func.handle(node, self.context, arg_list, node.call.func_name.span) return self.report_error( "Unexpected statement. Expected an assert, an intrinsic, a with statement, or a " f"special statement, but got {type(func).__name__}.", node.call.func_name.span, ) def transform_Slice(self, node): start = self.transform(node.start) end = self.transform(node.end) if not (isinstance(node.step, ast.Constant) and node.step.value == 1): self.report_error("Only step size 1 is supported for slices.", node.step.span) return Slice(start, end) def transform_Subscript(self, node): """Array access visitor. By now only 3 types of Subscript are supported: 1. Buffer[index, index, ...], Buffer element access(BufferLoad & BufferStore) Var[index] Buffer element access() 2. Buffer[start: stop, start: stop, ...], BufferRealize(realize(buffer[...])) 3. Array[index], Buffer element access """ symbol = self.transform(node.params[0]) if symbol is None: self.report_error( f"Variable {node.params[0].id.name} is not defined.", node.params[0].span) indexes = [self.transform(x) for x in node.params[1].values] if isinstance(symbol, tvm.tir.expr.Var): for index in indexes: if not isinstance(index, (tvm.tir.PrimExpr, int)): self.report_error( "Buffer load indexes should be int or PrimExpr, but they are " + type(index), node.span, ) return tvm.tir.Load("float32", symbol, indexes, True, span=tvm_span_from_synr(node.span)) elif isinstance(symbol, tvm.tir.Buffer): return BufferSlice(symbol, indexes, self.report_error, span=tvm_span_from_synr(node.span)) elif isinstance(symbol, tvm.container.Array): if len(indexes) > 1: self.report_error( "Array access should be one-dimension access, but the indices are " + str(indexes), node.span, ) index = indexes[0] if not isinstance(index, (int, tvm.tir.expr.IntImm)): self.report_error( "Array access index expected int or IntImm, but got " + type(index), node.span, ) if int(index) >= len(symbol): self.report_error( f"Array access out of bound, size: {len(symbol)}, got index {index}.", node.span, ) return symbol[int(index)] else: self.report_error( f"Cannot subscript from a {type(symbol).__name__}. Only variables and " "buffers are supported.", node.params[0].span, ) def transform_Attr(self, node): """Visitor for field access of the form `x.y`. This visitor is used to lookup function and symbol names. We have two cases to handle here: 1. If we have a statement of the form `tir.something`, then we lookup `tir.something` in the `Registry`. If the function is not in the registry, then we try to find a `tvm.ir.op.Op` with the same name. 2. All other names `tvm.something` are lookup up in this current python namespace. """ def get_full_attr_name(node: ast.Attr) -> str: reverse_field_names = [node.field.name] while isinstance(node.object, ast.Attr): node = node.object reverse_field_names.append(node.field.name) if isinstance(node.object, ast.Var): reverse_field_names.append(node.object.id.name) return ".".join(reversed(reverse_field_names)) if isinstance(node.object, (ast.Var, ast.Attr)): full_attr_name = get_full_attr_name(node) attr_object, fields = full_attr_name.split(".", maxsplit=1) if self.match_tir_namespace(attr_object): func_name = "tir." + fields res = Registry.lookup(func_name) if res is not None: return res try: return tvm.ir.op.Op.get(func_name) except TVMError as e: # Check if we got an attribute error if e.args[0].find("AttributeError"): self.report_error( f"Unregistered function `tir.{fields}`.", node.span) else: raise e symbol = self.transform(node.object) if symbol is None: self.report_error("Unsupported Attribute expression.", node.object.span) if not hasattr(symbol, node.field.name): self.report_error( f"Type {type(symbol)} does not have a field called `{node.field.name}`.", node.span) res = getattr(symbol, node.field.name) return res def transform_TypeAttr(self, node): """Visitor for field access of the form `x.y` for types. We have two cases here: 1. If the type is of the form `T.something`, we look up the type in the `tir` namespace in this module. 2. If the type is of the form `tvm.x.something` then we look up `tvm.x.something` in this modules namespace. """ if isinstance(node.object, ast.TypeVar): if self.match_tir_namespace(node.object.id.name): if not hasattr(tir, node.field.name): self.report_error( f"Invalid type annotation `tir.{node.field.name}`.", node.span) return getattr(tir, node.field.name) symbol = self.transform(node.object) if symbol is None: self.report_error("Unsupported Attribute expression", node.object.span) if not hasattr(symbol, node.field): self.report_error( f"Type {type(symbol)} does not have a field called `{node.field}`.", node.span) res = getattr(symbol, node.field) return res def transform_DictLiteral(self, node): """Dictionary literal visitor. Handles dictionary literals of the form `{x:y, z:2}`. """ keys = [self.transform(key) for key in node.keys] values = [self.transform(value) for value in node.values] return dict(zip(keys, values)) def transform_Tuple(self, node): """Tuple visitor. Handles tuples of the form `(x, y, 2)`. """ return tuple(self.transform(element) for element in node.values) def transform_ArrayLiteral(self, node): """List literal visitor. Handles lists of the form `[x, 2, 3]`. """ return [self.transform(element) for element in node.values] def transform_Var(self, node): """Variable visitor Handles variables like `x` in `x = 2`. """ name = node.id.name if name == "meta": return self.meta symbol = Registry.lookup(name) if symbol is not None: return symbol symbol = self.context.lookup_symbol(name) if symbol is not None: return symbol self.report_error(f"Unknown identifier {name}.", node.span) def transform_TypeVar(self, node): """Type variable visitor. Equivalent to `transform_Var` but for types. """ name = node.id.name symbol = Registry.lookup(name) or self.context.lookup_symbol(name) if symbol is not None: return symbol self.report_error(f"Unknown identifier {name}.", node.span) def transform_Constant(self, node): """Constant value visitor. Constant values include `None`, `"strings"`, `2` (integers), `4.2` (floats), and `true` (booleans). """ return tvm.runtime.convert(node.value, span=tvm_span_from_synr(node.span)) def transform_TypeConstant(self, node): """Constant value visitor for types. See `transform_Constant`. """ return node.value def transform_Return(self, node): self.report_error( "TVM script does not support return statements. Instead the last statement in any " "block is implicitly returned.", node.span, )
def notBitStream(bs1): return opBitStream(lambda x: operator.neg(x)-1, bs1)
def __neg__(self): return vec2d(operator.neg(self.x), operator.neg(self.y))
from operator import abs, neg, pos, add, floordiv, mod, mul, pow, sub, and_, truediv, invert, lshift, or_, rshift, xor a = -1 b = 5.0 c = 2 d = 6 print('a = ', a) print('b = ', b) print('c = ', c) print('d = ', d) print('\nPositive/Negative:') print(f'abs({a}):', abs(a)) print(f'neg({a}):', neg(a)) print(f'neg({b}):', neg(b)) print(f'pos({a}):', pos(a)) print(f'pos({b}):', pos(b)) print('\nArithmetic:') print(f'add({a}, {b}):', add(a, b)) print(f'floordiv({a}, {b}):', floordiv(a, b)) print(f'mod({a},{b}): ', mod(a, b)) print(f'mul({a},{b}): ', mul(a, b)) print(f'pow({c},{d}):', pow(c, d)) print(f'sub({b},{a}):', sub(b, a)) print(f'truediv({a},{b}):', truediv(a, b)) print(f'truediv({d},{c}):', truediv(d, c)) print('\nBitwise:') print(f'and_({c}, {d}) :', and_(c, d))
def p_expression_uminus(p): """expression : MINUS expression %prec UMINUS""" p[0] = operator.neg(p[2])
def __sub__(self, other): assert type(other) == type(self) # basic check: negating twice should be identity assert op.neg(op.neg(other)) == other return self + (-other)