Beispiel #1
0
    def inference(self, input_):
        conv1 = layers.conv2d_same(input_, self.num_kernel, name='conv1')

        res_block1 = self.res_block(conv1,
                                    self.num_kernel * 2,
                                    is_downsizing=False,
                                    name='res_block1')
        res_block2 = self.res_block(res_block1,
                                    self.num_kernel * 4,
                                    is_downsizing=True,
                                    name='res_block2')
        res_block3 = self.res_block(res_block2,
                                    self.num_kernel * 8,
                                    is_downsizing=True,
                                    name='res_block3')

        act = self.res_act(res_block3)
        pool = layers.avg_pool(act,
                               k_h=self.pool_kernel,
                               k_w=self.pool_kernel,
                               d_h=1,
                               d_w=1,
                               name='pool')
        flat = layers.flatten(pool, 'flat')

        linear = layers.linear(flat, self.num_class, name='linear')

        return linear
Beispiel #2
0
def latent(x, latent_size, reuse=False):
    """Add latant nodes to the graph.

    Args:
    x: Tensor, output from encoder.
    latent_size: Integer, size of latent vector.
    reuse: Boolean, whether to reuse variables.
    """
    with arg_scope([dense], reuse = reuse):
        x = flatten(x)
        x = dense(x, 32*4*4, latent_size, name='d1')
    return x
Beispiel #3
0
def latent(x, batch_size, latent_size, reuse=False):
    """Adds latent nodes for sampling and reparamaterization.

    Args:
    x: Tensor, input images.
    batch_size: Integer, batch size.
    latent_size: Integer, size of latent vector.
    reuse: Boolean, whether to reuse variables.
    """
    with arg_scope([dense], reuse=reuse):
        flat = flatten(x)
        z_mean = dense(flat, 32 * 4 * 4, latent_size, name='d1')
        z_stddev = dense(flat, 32 * 4 * 4, latent_size, name='d2')
        samples = tf.random_normal([batch_size, latent_size], 0, 1)
        z = (z_mean + (z_stddev * samples))
    return (samples, z, z_mean, z_stddev)
Beispiel #4
0
    def inference(self, input_):
        conv1 = layers.conv2d_same_repeat(input_,
                                          self.kernel_num,
                                          num_repeat=2,
                                          name="down1")
        pool1 = layers.max_pool(conv1, name="pool1")

        conv2 = layers.conv2d_same_repeat(pool1,
                                          self.kernel_num * 2,
                                          num_repeat=2,
                                          name="down2")
        pool2 = layers.max_pool(conv2, name="pool2")

        conv3 = layers.conv2d_same_repeat(pool2,
                                          self.kernel_num * 4,
                                          num_repeat=3,
                                          name="down3")
        pool3 = layers.max_pool(conv3, name="pool3")

        conv4 = layers.conv2d_same_repeat(pool3,
                                          self.kernel_num * 8,
                                          num_repeat=3,
                                          name="down4")
        pool4 = layers.max_pool(conv4, name="pool4")

        conv5 = layers.conv2d_same_repeat(pool4,
                                          self.kernel_num * 8,
                                          num_repeat=3,
                                          name="down5")
        pool5 = layers.max_pool(conv5, name="pool5")

        flat = layers.flatten(pool5, 'flat')

        linear = layers.linear(flat,
                               flat.get_shape().as_list()[-1],
                               name='linear')

        logits = layers.linear(linear, self.num_class, name='logits')

        return logits
Beispiel #5
0
    def inference(self, input_, reuse=False):
        with tf.variable_scope('ResNet') as scope:
            if reuse:
                scope.reuse_variables()

            conv1 = layers.conv2d_same_act(input_, self.num_kernel, k_h=7, k_w=7, d_h=2, d_w=2,
                                           activation_fn=self.act_fn, name='conv_1')

            pool1 = layers.max_pool(conv1, k_h=self.pool_kernel, k_w=self.pool_kernel,
                                    padding='SAME', name='pool1')

            layer_blocks = self.layer_repeat(pool1, self.layer_def, name='layers')

            pool2 = layers.global_avg_pool(layer_blocks, name='pool2')

            flat = layers.flatten(pool2, 'flat')

            linear = layers.linear(flat, self.num_class, name='linear')

            logit = tf.sigmoid(linear, name='logit')

            return logit
Beispiel #6
0
    def inference(self, input_):
        conv1 = layers.conv2d_same_repeat(input_, self.kernel_num, num_repeat=2, activation_fn=self.act_fn, name="down1")
        pool1 = layers.max_pool(conv1, name="pool1")

        conv2 = layers.conv2d_same_repeat(pool1, self.kernel_num * 2, num_repeat=2, activation_fn=self.act_fn, name="down2")
        pool2 = layers.max_pool(conv2, name="pool2")

        conv3 = layers.conv2d_same_repeat(pool2, self.kernel_num * 4, num_repeat=3, activation_fn=self.act_fn, name="down3")
        pool3 = layers.max_pool(conv3, name="pool3")

        conv4 = layers.conv2d_same_repeat(pool3, self.kernel_num * 8, num_repeat=3, activation_fn=self.act_fn, name="down4")
        pool4 = layers.max_pool(conv4, name="pool4")

        conv5 = layers.conv2d_same_repeat(pool4, self.kernel_num * 8, num_repeat=3, activation_fn=self.act_fn, name="down5")
        pool5 = layers.global_avg_pool(conv5, name="pool5")

        conv6 = layers.bottleneck_act(pool5, self.kernel_num * 8, activation_fn=self.act_fn, name="down6")
        conv7 = layers.bottleneck_layer(conv6, self.num_class, name="down7")

        logits = layers.flatten(conv7, 'flat')

        return logits
Beispiel #7
0
    def encode(self, x, reuse=False, is_training=True):
        with tf.variable_scope(self.name):
            with tf.variable_scope('Encoder') as vs:
                if reuse:
                    vs.reuse_variables()

                for i in range(3):
                    filters = self.first_filters * (2**i)
                    x = conv_block(x,
                                   filters=filters,
                                   sampling='same',
                                   is_training=is_training,
                                   **self.conv_block_params)
                    x = conv_block(x,
                                   filters=filters,
                                   sampling='down',
                                   is_training=is_training,
                                   **self.conv_block_params)
                self.feature_shape = x.get_shape().as_list()[1:]

                x = flatten(x)
                x = dense(x, 128, activation_='lrelu')
                x = dense(x, self.latent_dim)
            return x
def pixel_wise_cross_entropy(input_, target_, lamb=1.0, name="pixel_ce"):
    flat = layers.flatten(input_)
    return cross_entropy_loss(flat, target_, lamb, name)
Beispiel #9
0
def gan(x, args):
    """Initialize model.
        
    Args:
    x: Tensor, the real images.
    args: Argparse structure.
    """
    g_opt, d_opt = init_optimizer(args), init_optimizer(args)
    g_tower_grads, d_tower_grads = [], []

    x = flatten(x)
    x = 2 * (x - 0.5)
    # rescale [0,1] to [-1,1] depending on model
    # if args.model in ['wgan', 'iwgan']:
    # x = 2 * (x - 0.5)

    for x, scope, gpu_id in tower_scope_range(x, args.n_gpus, args.batch_size):
        # model
        with tf.variable_scope('generator'):
            g = generator(args.batch_size,
                          args.latent_size,
                          args,
                          reuse=(gpu_id > 0))
        with tf.variable_scope('discriminator'):
            d_real = discriminator(x, args, reuse=(gpu_id > 0))
            d_fake = discriminator(g, args, reuse=True)
        # losses
        g_loss, d_loss = losses(x, g, d_fake, d_real, args)
        # compute gradients
        g_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                     'generator')
        d_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                     'discriminator')
        g_tower_grads.append(g_opt.compute_gradients(g_loss,
                                                     var_list=g_params))
        d_tower_grads.append(d_opt.compute_gradients(d_loss,
                                                     var_list=d_params))
        # only need one batchnorm update (ends up being updates for last tower)
        batchnorm_updates = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope)

    # summaries
    summaries(g, x, args)

    # average and apply gradients
    g_grads = average_gradients(g_tower_grads)
    d_grads = average_gradients(d_tower_grads)
    summarize_gradients(g_grads + d_grads)
    global_step = tf.train.get_global_step()
    g_apply_grads = g_opt.apply_gradients(g_grads, global_step=global_step)
    d_apply_grads = d_opt.apply_gradients(d_grads, global_step=global_step)

    # training
    if args.model == 'gan':
        train_func = _train_gan(g_apply_grads, d_apply_grads,
                                batchnorm_updates)
    elif args.model == 'wgan':
        train_func = _train_wgan(g_apply_grads, g_params, d_apply_grads,
                                 d_params, batchnorm_updates)
    elif args.model == 'iwgan':
        train_func = _train_iwgan(g_apply_grads, d_apply_grads,
                                  batchnorm_updates)

    return train_func
Beispiel #10
0
    def _inference(self, input_):
        conv1 = layers.conv2d_same_act(input_,
                                       16,
                                       activation_fn=self.activation_fn,
                                       name='conv1')
        skip1 = layers.bottleneck_layer(conv1, 32, name='skip1')
        _, conv2 = layers.conv2d_same_repeat(conv1,
                                             32,
                                             num_repeat=2,
                                             activation_fn=self.activation_fn,
                                             with_logit=True,
                                             name='conv2')

        res1 = tf.add(skip1, conv2, name='res1')
        res_act1 = self.res_act(res1)

        _, conv3 = layers.conv2d_same_repeat(res_act1,
                                             32,
                                             num_repeat=2,
                                             activation_fn=self.activation_fn,
                                             with_logit=True,
                                             name='conv3')

        res2 = tf.add(conv3, res1, name='res2')
        res_act2 = self.res_act(res2)

        skip2 = layers.bottleneck_layer(res_act2,
                                        64,
                                        d_h=2,
                                        d_w=2,
                                        name='skip2')
        conv4 = layers.conv2d_same_act(res_act2,
                                       64,
                                       d_h=2,
                                       d_w=2,
                                       activation_fn=self.activation_fn,
                                       name='conv4')
        conv5 = layers.conv2d_same(conv4, 64, name='conv5')

        res3 = tf.add(skip2, conv5, name='res3')
        res_act3 = self.res_act(res3)

        _, conv6 = layers.conv2d_same_repeat(res_act1,
                                             64,
                                             num_repeat=2,
                                             activation_fn=self.activation_fn,
                                             with_logit=True,
                                             name='conv3')

        res4 = tf.add(res3, conv6, name='res4')
        res_act4 = self.res_act(res4)

        skip3 = layers.bottleneck_layer(res_act4,
                                        128,
                                        d_h=2,
                                        d_w=2,
                                        name='skip3')
        conv7 = layers.conv2d_same_act(res_act4,
                                       128,
                                       d_h=2,
                                       d_w=2,
                                       activation_fn=self.activation_fn,
                                       name='conv7')
        conv8 = layers.conv2d_same(conv7, 128, name='conv8')

        res5 = tf.add(skip3, conv8, name='res5')

        res_act5 = self.res_act(res5)
        _, conv9 = layers.conv2d_same_repeat(res_act5,
                                             128,
                                             num_repeat=2,
                                             activation_fn=self.activation_fn,
                                             with_logit=True,
                                             name='conv9')

        res6 = tf.add(res5, conv9, name='res6')
        res_act6 = self.res_act(res6)

        pool = layers.avg_pool(res_act6,
                               k_h=8,
                               k_w=8,
                               d_h=1,
                               d_w=1,
                               name='pool')
        flat = layers.flatten(pool, 'flat')

        linear = layers.linear(flat, self.num_class, name='linear')

        return linear