Beispiel #1
0
def _residual_block(input_net,
                    num_outputs,
                    kernel_size,
                    stride=1,
                    padding_size=0,
                    activation_fn=tf.nn.relu,
                    normalizer_fn=None,
                    name='residual_block'):
    """Residual Block.

  Input Tensor X - > Conv1 -> IN -> ReLU -> Conv2 -> IN + X

  PyTorch Version:
  https://github.com/yunjey/StarGAN/blob/fbdb6a6ce2a4a92e1dc034faec765e0dbe4b8164/model.py#L7

  Args:
    input_net: Tensor as input.
    num_outputs: (int) number of output channels for Convolution.
    kernel_size: (int) size of the square kernel for Convolution.
    stride: (int) stride for Convolution. Default to 1.
    padding_size: (int) padding size for Convolution. Default to 0.
    activation_fn: Activation function.
    normalizer_fn: Normalization function.
    name: Name scope

  Returns:
    Residual Tensor with the same shape as the input tensor.
  """

    with tf.variable_scope(name):

        with tf.contrib.framework.arg_scope([tf.contrib.layers.conv2d],
                                            num_outputs=num_outputs,
                                            kernel_size=kernel_size,
                                            stride=stride,
                                            padding='VALID',
                                            normalizer_fn=normalizer_fn,
                                            activation_fn=None):

            res_block = ops.pad(input_net, padding_size)
            res_block = tf.contrib.layers.conv2d(inputs=res_block,
                                                 scope='conv_0')

            res_block = activation_fn(res_block, name='activation_0')

            res_block = ops.pad(res_block, padding_size)
            res_block = tf.contrib.layers.conv2d(inputs=res_block,
                                                 scope='conv_1')

            output_net = res_block + input_net

    return output_net
Beispiel #2
0
  def test_padding_with_tensor_of_invalid_shape(self):

    n = 2
    invalid_rank = 1
    h = 128
    w = 64
    c = 3
    pad = 3

    test_input_tensor = tf.random_uniform((n, invalid_rank, h, w, c))

    with self.assertRaises(ValueError):
      ops.pad(test_input_tensor, padding_size=pad)
Beispiel #3
0
    def test_padding_with_tensor_of_invalid_shape(self):

        n = 2
        invalid_rank = 1
        h = 128
        w = 64
        c = 3
        pad = 3

        test_input_tensor = tf.random_uniform((n, invalid_rank, h, w, c))

        with self.assertRaises(ValueError):
            ops.pad(test_input_tensor, padding_size=pad)
Beispiel #4
0
def _residual_block(input_net,
                    num_outputs,
                    kernel_size,
                    stride=1,
                    padding_size=0,
                    activation_fn=tf.nn.relu,
                    normalizer_fn=None,
                    name='residual_block'):
  """Residual Block.

  Input Tensor X - > Conv1 -> IN -> ReLU -> Conv2 -> IN + X

  PyTorch Version:
  https://github.com/yunjey/StarGAN/blob/fbdb6a6ce2a4a92e1dc034faec765e0dbe4b8164/model.py#L7

  Args:
    input_net: Tensor as input.
    num_outputs: (int) number of output channels for Convolution.
    kernel_size: (int) size of the square kernel for Convolution.
    stride: (int) stride for Convolution. Default to 1.
    padding_size: (int) padding size for Convolution. Default to 0.
    activation_fn: Activation function.
    normalizer_fn: Normalization function.
    name: Name scope

  Returns:
    Residual Tensor with the same shape as the input tensor.
  """

  with tf.variable_scope(name):

    with tf.contrib.framework.arg_scope(
        [tf.contrib.layers.conv2d],
        num_outputs=num_outputs,
        kernel_size=kernel_size,
        stride=stride,
        padding='VALID',
        normalizer_fn=normalizer_fn,
        activation_fn=None):

      res_block = ops.pad(input_net, padding_size)
      res_block = tf.contrib.layers.conv2d(inputs=res_block, scope='conv_0')

      res_block = activation_fn(res_block, name='activation_0')

      res_block = ops.pad(res_block, padding_size)
      res_block = tf.contrib.layers.conv2d(inputs=res_block, scope='conv_1')

      output_net = res_block + input_net

  return output_net
Beispiel #5
0
def discriminator_output_source(input_net):
  """Output Layer for Source in the Discriminator.

  Determine if the image is real/fake based on the feature extracted. We follow
  the original paper design where the output is not a simple (batch_size) shape
  Tensor but rather a (batch_size, 2, 2, 2048) shape Tensor. We will get the
  correct shape later when we piece things together.

  PyTorch Version:
  https://github.com/yunjey/StarGAN/blob/fbdb6a6ce2a4a92e1dc034faec765e0dbe4b8164/model.py#L79

  Args:
    input_net: Tensor of shape (batch_size, h / 64, w / 64, 2048) as features.

  Returns:
    Tensor of shape (batch_size, h / 64, w / 64, 1) as the score.
  """

  with tf.variable_scope('discriminator_output_source'):

    output_src = ops.pad(input_net, 1)
    output_src = tf.contrib.layers.conv2d(
        inputs=output_src,
        num_outputs=1,
        kernel_size=3,
        stride=1,
        padding='VALID',
        activation_fn=None,
        normalizer_fn=None,
        biases_initializer=None,
        scope='conv')

  return output_src
Beispiel #6
0
def discriminator_output_source(input_net):
    """Output Layer for Source in the Discriminator.

  Determine if the image is real/fake based on the feature extracted. We follow
  the original paper design where the output is not a simple (batch_size) shape
  Tensor but rather a (batch_size, 2, 2, 2048) shape Tensor. We will get the
  correct shape later when we piece things together.

  PyTorch Version:
  https://github.com/yunjey/StarGAN/blob/fbdb6a6ce2a4a92e1dc034faec765e0dbe4b8164/model.py#L79

  Args:
    input_net: Tensor of shape (batch_size, h / 64, w / 64, 2048) as features.

  Returns:
    Tensor of shape (batch_size, h / 64, w / 64, 1) as the score.
  """

    with tf.variable_scope('discriminator_output_source'):

        output_src = ops.pad(input_net, 1)
        output_src = tf.contrib.layers.conv2d(inputs=output_src,
                                              num_outputs=1,
                                              kernel_size=3,
                                              stride=1,
                                              padding='VALID',
                                              activation_fn=None,
                                              normalizer_fn=None,
                                              biases_initializer=None,
                                              scope='conv')

    return output_src
Beispiel #7
0
  def test_padding_with_3D_tensor(self):

    h = 128
    w = 64
    c = 3
    pad = 3

    test_input_tensor = tf.random_uniform((h, w, c))
    test_output_tensor = ops.pad(test_input_tensor, padding_size=pad)

    with self.test_session() as sess:
      output = sess.run(test_output_tensor)
      self.assertTupleEqual((h + pad * 2, w + pad * 2, c), output.shape)
Beispiel #8
0
    def test_padding_with_3D_tensor(self):

        h = 128
        w = 64
        c = 3
        pad = 3

        test_input_tensor = tf.random_uniform((h, w, c))
        test_output_tensor = ops.pad(test_input_tensor, padding_size=pad)

        with self.test_session() as sess:
            output = sess.run(test_output_tensor)
            self.assertTupleEqual((h + pad * 2, w + pad * 2, c), output.shape)
Beispiel #9
0
def generator_up_sample(input_net, num_outputs):
    """Up-sampling module in Generator.

  Up sampling path for image generation in the Generator.

  PyTorch Version:
  https://github.com/yunjey/StarGAN/blob/fbdb6a6ce2a4a92e1dc034faec765e0dbe4b8164/model.py#L44

  Args:
    input_net: Tensor of shape (batch_size, h / 4, w / 4, 256).
    num_outputs: (int) Number of channel for the output tensor.

  Returns:
    Tensor of shape (batch_size, h, w, num_outputs).
  """

    with tf.variable_scope('generator_up_sample'):

        with tf.contrib.framework.arg_scope(
            [tf.contrib.layers.conv2d_transpose],
                kernel_size=4,
                stride=2,
                padding='VALID',
                normalizer_fn=tf.contrib.layers.instance_norm,
                activation_fn=tf.nn.relu):

            up_sample = tf.contrib.layers.conv2d_transpose(inputs=input_net,
                                                           num_outputs=128,
                                                           scope='deconv_0')
            up_sample = up_sample[:, 1:-1, 1:-1, :]

            up_sample = tf.contrib.layers.conv2d_transpose(inputs=up_sample,
                                                           num_outputs=64,
                                                           scope='deconv_1')
            up_sample = up_sample[:, 1:-1, 1:-1, :]

        output_net = ops.pad(up_sample, 3)
        output_net = tf.contrib.layers.conv2d(inputs=output_net,
                                              num_outputs=num_outputs,
                                              kernel_size=7,
                                              stride=1,
                                              padding='VALID',
                                              activation_fn=tf.nn.tanh,
                                              normalizer_fn=None,
                                              biases_initializer=None,
                                              scope='conv_0')

    return output_net
Beispiel #10
0
def generator_up_sample(input_net, num_outputs):
  """Up-sampling module in Generator.

  Up sampling path for image generation in the Generator.

  PyTorch Version:
  https://github.com/yunjey/StarGAN/blob/fbdb6a6ce2a4a92e1dc034faec765e0dbe4b8164/model.py#L44

  Args:
    input_net: Tensor of shape (batch_size, h / 4, w / 4, 256).
    num_outputs: (int) Number of channel for the output tensor.

  Returns:
    Tensor of shape (batch_size, h, w, num_outputs).
  """

  with tf.variable_scope('generator_up_sample'):

    with tf.contrib.framework.arg_scope(
        [tf.contrib.layers.conv2d_transpose],
        kernel_size=4,
        stride=2,
        padding='VALID',
        normalizer_fn=tf.contrib.layers.instance_norm,
        activation_fn=tf.nn.relu):

      up_sample = tf.contrib.layers.conv2d_transpose(
          inputs=input_net, num_outputs=128, scope='deconv_0')
      up_sample = up_sample[:, 1:-1, 1:-1, :]

      up_sample = tf.contrib.layers.conv2d_transpose(
          inputs=up_sample, num_outputs=64, scope='deconv_1')
      up_sample = up_sample[:, 1:-1, 1:-1, :]

    output_net = ops.pad(up_sample, 3)
    output_net = tf.contrib.layers.conv2d(
        inputs=output_net,
        num_outputs=num_outputs,
        kernel_size=7,
        stride=1,
        padding='VALID',
        activation_fn=tf.nn.tanh,
        normalizer_fn=None,
        biases_initializer=None,
        scope='conv_0')

  return output_net
Beispiel #11
0
def discriminator_input_hidden(input_net, hidden_layer=6, init_num_outputs=64):
  """Input Layer + Hidden Layer in the Discriminator.

  Feature extraction pathway in the Discriminator.

  PyTorch Version:
  https://github.com/yunjey/StarGAN/blob/fbdb6a6ce2a4a92e1dc034faec765e0dbe4b8164/model.py#L68

  Args:
    input_net: Tensor of shape (batch_size, h, w, 3) as batch of images.
    hidden_layer: (int) Number of hidden layers. Default to 6 per the original
      implementation.
    init_num_outputs: (int) Number of hidden unit in the first hidden layer. The
      number of hidden unit double after each layer. Default to 64 per the
      original implementation.

  Returns:
    Tensor of shape (batch_size, h / 64, w / 64, 2048) as features.
  """

  num_outputs = init_num_outputs

  with tf.variable_scope('discriminator_input_hidden'):

    hidden = input_net

    for i in range(hidden_layer):

      hidden = ops.pad(hidden, 1)
      hidden = tf.contrib.layers.conv2d(
          inputs=hidden,
          num_outputs=num_outputs,
          kernel_size=4,
          stride=2,
          padding='VALID',
          activation_fn=None,
          normalizer_fn=None,
          scope='conv_{}'.format(i))
      hidden = tf.nn.leaky_relu(hidden, alpha=0.01)

      num_outputs = 2 * num_outputs

  return hidden
Beispiel #12
0
def discriminator_input_hidden(input_net, hidden_layer=6, init_num_outputs=64):
    """Input Layer + Hidden Layer in the Discriminator.

  Feature extraction pathway in the Discriminator.

  PyTorch Version:
  https://github.com/yunjey/StarGAN/blob/fbdb6a6ce2a4a92e1dc034faec765e0dbe4b8164/model.py#L68

  Args:
    input_net: Tensor of shape (batch_size, h, w, 3) as batch of images.
    hidden_layer: (int) Number of hidden layers. Default to 6 per the original
      implementation.
    init_num_outputs: (int) Number of hidden unit in the first hidden layer. The
      number of hidden unit double after each layer. Default to 64 per the
      original implementation.

  Returns:
    Tensor of shape (batch_size, h / 64, w / 64, 2048) as features.
  """

    num_outputs = init_num_outputs

    with tf.variable_scope('discriminator_input_hidden'):

        hidden = input_net

        for i in range(hidden_layer):

            hidden = ops.pad(hidden, 1)
            hidden = tf.contrib.layers.conv2d(inputs=hidden,
                                              num_outputs=num_outputs,
                                              kernel_size=4,
                                              stride=2,
                                              padding='VALID',
                                              activation_fn=None,
                                              normalizer_fn=None,
                                              scope='conv_{}'.format(i))
            hidden = tf.nn.leaky_relu(hidden, alpha=0.01)

            num_outputs = 2 * num_outputs

    return hidden
Beispiel #13
0
def generator_down_sample(input_net, final_num_outputs=256):
  """Down-sampling module in Generator.

  Down sampling pathway of the Generator Architecture:

  PyTorch Version:
  https://github.com/yunjey/StarGAN/blob/fbdb6a6ce2a4a92e1dc034faec765e0dbe4b8164/model.py#L32

  Notes:
    We require dimension 1 and dimension 2 of the input_net to be fully defined
    for the correct down sampling.

  Args:
    input_net: Tensor of shape (batch_size, h, w, c + num_class).
    final_num_outputs: (int) Number of hidden unit for the final layer.

  Returns:
    Tensor of shape (batch_size, h / 4, w / 4, 256).

  Raises:
    ValueError: If final_num_outputs are not divisible by 4,
      or input_net does not have a rank of 4,
      or dimension 1 and dimension 2 of input_net are not defined at graph
      construction time,
      or dimension 1 and dimension 2 of input_net are not divisible by 4.
  """

  if final_num_outputs % 4 != 0:
    raise ValueError('Final number outputs need to be divisible by 4.')

  # Check the rank of input_net.
  input_net.shape.assert_has_rank(4)

  # Check dimension 1 and dimension 2 are defined and divisible by 4.
  if input_net.shape[1]:
    if input_net.shape[1] % 4 != 0:
      raise ValueError(
          'Dimension 1 of the input should be divisible by 4, but is {} '
          'instead.'.
          format(input_net.shape[1]))
  else:
    raise ValueError('Dimension 1 of the input should be explicitly defined.')

  # Check dimension 1 and dimension 2 are defined and divisible by 4.
  if input_net.shape[2]:
    if input_net.shape[2] % 4 != 0:
      raise ValueError(
          'Dimension 2 of the input should be divisible by 4, but is {} '
          'instead.'.
          format(input_net.shape[2]))
  else:
    raise ValueError('Dimension 2 of the input should be explicitly defined.')

  with tf.variable_scope('generator_down_sample'):

    with tf.contrib.framework.arg_scope(
        [tf.contrib.layers.conv2d],
        padding='VALID',
        biases_initializer=None,
        normalizer_fn=tf.contrib.layers.instance_norm,
        activation_fn=tf.nn.relu):

      down_sample = ops.pad(input_net, 3)
      down_sample = tf.contrib.layers.conv2d(
          inputs=down_sample,
          num_outputs=final_num_outputs / 4,
          kernel_size=7,
          stride=1,
          scope='conv_0')

      down_sample = ops.pad(down_sample, 1)
      down_sample = tf.contrib.layers.conv2d(
          inputs=down_sample,
          num_outputs=final_num_outputs / 2,
          kernel_size=4,
          stride=2,
          scope='conv_1')

      down_sample = ops.pad(down_sample, 1)
      output_net = tf.contrib.layers.conv2d(
          inputs=down_sample,
          num_outputs=final_num_outputs,
          kernel_size=4,
          stride=2,
          scope='conv_2')

    return output_net
Beispiel #14
0
def generator_down_sample(input_net, final_num_outputs=256):
    """Down-sampling module in Generator.

  Down sampling pathway of the Generator Architecture:

  PyTorch Version:
  https://github.com/yunjey/StarGAN/blob/fbdb6a6ce2a4a92e1dc034faec765e0dbe4b8164/model.py#L32

  Notes:
    We require dimension 1 and dimension 2 of the input_net to be fully defined
    for the correct down sampling.

  Args:
    input_net: Tensor of shape (batch_size, h, w, c + num_class).
    final_num_outputs: (int) Number of hidden unit for the final layer.

  Returns:
    Tensor of shape (batch_size, h / 4, w / 4, 256).

  Raises:
    ValueError: If final_num_outputs are not divisible by 4,
      or input_net does not have a rank of 4,
      or dimension 1 and dimension 2 of input_net are not defined at graph
      construction time,
      or dimension 1 and dimension 2 of input_net are not divisible by 4.
  """

    if final_num_outputs % 4 != 0:
        raise ValueError('Final number outputs need to be divisible by 4.')

    # Check the rank of input_net.
    input_net.shape.assert_has_rank(4)

    # Check dimension 1 and dimension 2 are defined and divisible by 4.
    if input_net.shape[1]:
        if input_net.shape[1] % 4 != 0:
            raise ValueError(
                'Dimension 1 of the input should be divisible by 4, but is {} '
                'instead.'.format(input_net.shape[1]))
    else:
        raise ValueError(
            'Dimension 1 of the input should be explicitly defined.')

    # Check dimension 1 and dimension 2 are defined and divisible by 4.
    if input_net.shape[2]:
        if input_net.shape[2] % 4 != 0:
            raise ValueError(
                'Dimension 2 of the input should be divisible by 4, but is {} '
                'instead.'.format(input_net.shape[2]))
    else:
        raise ValueError(
            'Dimension 2 of the input should be explicitly defined.')

    with tf.variable_scope('generator_down_sample'):

        with tf.contrib.framework.arg_scope(
            [tf.contrib.layers.conv2d],
                padding='VALID',
                biases_initializer=None,
                normalizer_fn=tf.contrib.layers.instance_norm,
                activation_fn=tf.nn.relu):

            down_sample = ops.pad(input_net, 3)
            down_sample = tf.contrib.layers.conv2d(
                inputs=down_sample,
                num_outputs=final_num_outputs / 4,
                kernel_size=7,
                stride=1,
                scope='conv_0')

            down_sample = ops.pad(down_sample, 1)
            down_sample = tf.contrib.layers.conv2d(
                inputs=down_sample,
                num_outputs=final_num_outputs / 2,
                kernel_size=4,
                stride=2,
                scope='conv_1')

            down_sample = ops.pad(down_sample, 1)
            output_net = tf.contrib.layers.conv2d(
                inputs=down_sample,
                num_outputs=final_num_outputs,
                kernel_size=4,
                stride=2,
                scope='conv_2')

        return output_net
    def run(self, args):
        print(" [*] Running....")

        if not os.path.exists(args.output_path):
            os.makedirs(args.output_path)

        self.sess.run(tf.global_variables_initializer())
        self.sess.run(tf.local_variables_initializer())

        disp_batch = self.dataloader.disp
        left_batch = self.dataloader.left
        right_batch = self.dataloader.right
        image_name = self.dataloader.filename
        num_samples = count_text_lines(self.dataset)

        if self.mode == 'reprojection':
            print(' [*] Generating Reprojection error')
            warped = ops.generate_image_left(self.placeholders['right'],
                                             self.placeholders['disp'])
            net_output = -(tf.reduce_sum(
                0.85 * ops.SSIM(warped, self.placeholders['left']) +
                0.15 * tf.abs(warped - self.placeholders['left']),
                -1,
                keepdims=True))

        elif self.mode == 'agreement':
            print(' [*] Generating Disparity Agreement')
            net_output = tf.py_func(ops.agreement,
                                    [self.placeholders['disp'], 2], tf.float32)

        elif self.mode == 'uniqueness':
            print(' [*] Generating Uniqueness Constraint')
            net_output = tf.py_func(ops.uniqueness,
                                    [self.placeholders['disp']], tf.float32)

        elif 'otb' in self.mode:

            print(' [*] OTB inference')
            self.saver = tf.train.Saver()
            if args.checkpoint_path:
                self.saver.restore(self.sess, args.checkpoint_path)
                print(" [*] Load model: SUCCESS")
            else:
                print(" [*] Load failed...neglected")
                print(" [*] End Testing...")
                raise ValueError('args.checkpoint_path is None')

            net_output = tf.nn.sigmoid(self.prediction)

            if self.mode == 'otb-online':
                print(' [*] Online Adaptation')
                self.optimizer = tf.train.GradientDescentOptimizer(
                    self.learning_rate).minimize(
                        self.loss, var_list=tf.global_variables())
        else:
            print(" [*] Unsupported testing mode!")
            raise ValueError('args.mode is not supported')

        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(coord=coord)

        print(" [*] Start Testing...")
        bar = progressbar.ProgressBar(max_value=num_samples)
        for step in range(num_samples):
            batch_left, batch_right, batch_disp, filename = self.sess.run(
                [left_batch, right_batch, disp_batch, image_name])

            val_disp, hpad, wpad = ops.pad(batch_disp, self.image_height,
                                           self.image_width)
            val_left, _, _ = ops.pad(batch_left, self.image_height,
                                     self.image_width)
            val_right, _, _ = ops.pad(batch_right, self.image_height,
                                      self.image_width)

            if self.mode == 'otb-online':
                _, confidence = self.sess.run(
                    [self.optimizer, net_output],
                    feed_dict={
                        self.placeholders['disp']: val_disp,
                        self.placeholders['left']: val_left,
                        self.placeholders['right']: val_right,
                        self.learning_rate: self.initial_learning_rate
                    })
            else:
                confidence = self.sess.run(net_output,
                                           feed_dict={
                                               self.placeholders['disp']:
                                               val_disp,
                                               self.placeholders['left']:
                                               val_left,
                                               self.placeholders['right']:
                                               val_right
                                           })

            confidence = ops.depad(confidence, hpad, wpad)

            outdir = args.output_path + '/' + filename
            if not os.path.exists(outdir):
                os.makedirs(outdir)

            confidence_file = outdir + '/' + self.mode + '.png'
            c = confidence[0]
            c = (c - np.min(c)) / (np.max(c) - np.min(c))
            cv2.imwrite(confidence_file, (c * (2**16 - 1)).astype('uint16'))
            if self.colors:
                color_file = outdir + '/' + self.mode + '-color.png'
                cv2.imwrite(
                    color_file,
                    cv2.applyColorMap(((1 - c) * (2**8 - 1)).astype('uint8'),
                                      cv2.COLORMAP_WINTER))

            bar.update(step + 1)

        coord.request_stop()
        coord.join(threads)
Beispiel #16
0
    def test(self, args):
        print("[*] Testing....")

        if not os.path.exists(args.output_path):
            os.makedirs(args.output_path)

        self.sess.run(tf.global_variables_initializer())
        self.sess.run(tf.local_variables_initializer())

        if self.model == 'LGC':
            self.vars = tf.all_variables()
            self.vars_global = [k for k in self.vars if k.name.startswith('ConfNet')]
            self.vars_local = [k for k in self.vars if (k.name.startswith('CCNN') or k.name.startswith('LFN')) ]
            self.vars_lgc = [k for k in self.vars if k.name.startswith('LGC')]

            self.saver_global = tf.train.Saver(self.vars_global)
            self.saver_local = tf.train.Saver(self.vars_local)
            self.saver_LGC = tf.train.Saver(self.vars_lgc)

            if args.checkpoint_path[0] and args.checkpoint_path[1] and args.checkpoint_path[2]:
                self.saver_global.restore(self.sess, args.checkpoint_path[0])
                self.saver_local.restore(self.sess, args.checkpoint_path[1])
                self.saver_LGC.restore(self.sess, args.checkpoint_path[2])
                
                print(" [*] Load model: SUCCESS")
            else:
                print(" [*] Load failed...neglected")
                print(" [*] End Testing...")
                raise ValueError('args.checkpoint_path[0] or args.checkpoint_path[1] or args.checkpoint_path[2] is None')
        else:
            self.saver = tf.train.Saver()

            if args.checkpoint_path:
                self.saver.restore(self.sess, args.checkpoint_path[0])
                print(" [*] Load model: SUCCESS")
            else:
                print(" [*] Load failed...neglected")
                print(" [*] End Testing...")
                raise ValueError('args.checkpoint_path is None')

        disp_batch = self.dataloader.disp
        left_batch = self.dataloader.left
        line = self.dataloader.disp_filename
        num_samples = count_text_lines(self.dataset)

        if self.model == 'ConfNet':
            prediction = tf.nn.sigmoid(self.prediction)
        else:
            prediction = tf.pad(tf.nn.sigmoid(self.prediction), tf.constant([[0, 0], [self.radius, self.radius], [self.radius, self.radius], [0, 0]]), "CONSTANT")

        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(coord=coord)

        print(" [*] Start Testing...")
        for step in range(num_samples):
            batch_left, batch_disp, filename = self.sess.run([left_batch, disp_batch, line])
            if self.model == 'ConfNet' or self.model == 'LGC':
                val_disp, hpad, wpad = ops.pad(batch_disp)
                val_left, _, _ = ops.pad(batch_left)

            print(" [*] Test image:" + filename)
            start = time.time()
            if self.model == 'ConfNet' or self.model == 'LGC':
                confidence = self.sess.run(prediction, feed_dict={self.left: val_left, self.disp: val_disp})
                confidence = ops.depad(confidence, hpad, wpad)
            else:
                confidence = self.sess.run(prediction, feed_dict={self.left: batch_left, self.disp: batch_disp})
            current = time.time()
            output_file = args.output_path + filename.strip().split('/')[-1]

            cv2.imwrite(output_file, (confidence[0] * 65535.0).astype('uint16'))
            print(" [*] Confidence prediction saved in:" + output_file)
            print(" [*] Running time:" + str(current - start) + "s")

        coord.request_stop()
        coord.join(threads)