args = parser.parse_args() # setup device os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu device = 'cuda' if torch.cuda.is_available() else 'cpu' # get the dataset data = Cifar10Provider(root=args.root, workers=8) # neuron configure neurons = { 'relu': nn.ReLU(True), 'leaky_relu': nn.LeakyReLU(negative_slope=args.neg_slope, inplace=True), 'tanh': nn.Tanh(), 'prelu': nn.PReLU(), 'sprelu': sPReLU(), 'selu': nn.SELU(), 'seluv2': SeLUv2(gamma_=np.square(args.gain), fixpoint=args.fixpoint, epsilon_=args.epsilon) } # initialization method configure initializer = Initializer(method=args.init_fn, nonlinearity=args.neuron, neg_slope=args.neg_slope, manual=args.gain) # normalization method configure norm_fns = { 'none': None, 'bn': nn.BatchNorm2d }
# get the dataset data = Cifar10Provider(root=args.root, workers=8) # neuron configure neurons = { 'relu': nn.ReLU(True), 'leaky_relu': nn.LeakyReLU(negative_slope=args.neg_slope, inplace=True), 'tanh': nn.Tanh(), 'prelu': nn.PReLU(), 'sprelu': sPReLU(), 'selu': nn.SELU(), 'seluv2': SeLUv2(gamma_=np.square(args.gain), fixpoint=args.fixpoint, epsilon_=args.epsilon) } # initialization method configure initializer = Initializer(method=args.init_fn, nonlinearity=args.neuron, neg_slope=args.neg_slope, manual=args.gain) # normalization method configure