def __call__(self, EC_input): """ Args: input: batch_size x width x height x 3 Returns: output: same size as input """ with tf.variable_scope(self.name): EC_input = tf.nn.dropout(EC_input, keep_prob=self.keep_prob) with tf.variable_scope("conv1", reuse=self.reuse): conv1 = tf.layers.conv2d( inputs=EC_input, filters=self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 1), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv1') norm1 = ops._norm(conv1, self.is_training, self.norm) relu1 = ops.relu(norm1) with tf.variable_scope("conv2", reuse=self.reuse): conv2 = tf.layers.conv2d( inputs=relu1, filters=self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv2') norm2 = ops._norm(conv2, self.is_training, self.norm) relu2 = ops.relu(norm2) # pool1 with tf.variable_scope("conv3", reuse=self.reuse): conv3 = tf.layers.conv2d( inputs=relu2, filters=self.ngf, kernel_size=3, strides=self.slice_stride, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv3') # norm3 = ops._norm(conv3, self.is_training, self.norm) # relu3 = ops.relu(norm3) with tf.variable_scope("conv4", reuse=self.reuse): conv4 = tf.layers.conv2d( inputs=conv3, filters=2 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv4') norm4 = ops._norm(conv4, self.is_training, self.norm) relu4 = ops.relu(norm4) with tf.variable_scope("conv5", reuse=self.reuse): conv5 = tf.layers.conv2d( inputs=relu4, filters=2 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 2 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv5') norm5 = ops._norm(conv5, self.is_training, self.norm) relu5 = tf.nn.relu(norm5) # pool2 with tf.variable_scope("conv6", reuse=self.reuse): conv6 = tf.layers.conv2d( inputs=relu5, filters=2 * self.ngf, kernel_size=3, strides=self.slice_stride, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 2 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv6') # norm6 = ops._norm(conv6, self.is_training, self.norm) # relu6 = ops.relu(norm6) with tf.variable_scope("conv7", reuse=self.reuse): conv7 = tf.layers.conv2d( inputs=conv6, filters=4 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 2 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv7') norm7 = ops._norm(conv7, self.is_training, self.norm) relu7 = ops.relu(norm7) with tf.variable_scope("conv8", reuse=self.reuse): conv8 = tf.layers.conv2d( inputs=relu7, filters=4 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 4 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv8') norm8 = ops._norm(conv8, self.is_training, self.norm) relu8 = ops.relu(norm8) # pool3 with tf.variable_scope("conv9", reuse=self.reuse): conv9 = tf.layers.conv2d( inputs=relu8, filters=4 * self.ngf, kernel_size=3, strides=self.slice_stride, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 4 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv9') # DC with tf.variable_scope("conv10", reuse=self.reuse): conv10 = tf.layers.conv2d( inputs=conv9, filters=4 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 4 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv10') norm10 = ops._norm(conv10, self.is_training, self.norm) relu10 = ops.relu(norm10) with tf.variable_scope("deconv1_r", reuse=self.reuse): resize1 = ops.uk_resize(relu10, reuse=self.reuse, name='resize1') deconv1_r = tf.layers.conv2d( inputs=resize1, filters=4 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 4 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='deconv1_r') deconv1_norm1_r = ops._norm(deconv1_r, self.is_training, self.norm) deconv1 = ops.relu(deconv1_norm1_r) with tf.variable_scope("concat1", reuse=self.reuse): concat1 = tf.concat([relu8, deconv1], axis=-1) with tf.variable_scope("add1_conv1", reuse=self.reuse): add1_conv1 = tf.layers.conv2d( inputs=concat1, filters=2 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 8 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='add1_conv1') add1_norm1 = ops._norm(add1_conv1, self.is_training, self.norm) add1_relu1 = ops.relu(add1_norm1) with tf.variable_scope("add1_conv2", reuse=self.reuse): add1_conv2 = tf.layers.conv2d( inputs=add1_relu1, filters=2 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 2 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='add1_conv2') add1_norm2 = ops._norm(add1_conv2, self.is_training, self.norm) add1_relu2 = ops.relu(add1_norm2) with tf.variable_scope("deconv2_r", reuse=self.reuse): resize2 = ops.uk_resize(add1_relu2, reuse=self.reuse, name='resize2') deconv2_r = tf.layers.conv2d( inputs=resize2, filters=2 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 2 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='deconv2_r') deconv2_norm1_r = ops._norm(deconv2_r, self.is_training, self.norm) deconv2 = ops.relu(deconv2_norm1_r) with tf.variable_scope("concat2", reuse=self.reuse): concat2 = tf.concat([relu5, deconv2], axis=-1) with tf.variable_scope("add2_conv1", reuse=self.reuse): add2_conv1 = tf.layers.conv2d( inputs=concat2, filters=self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 4 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='add2_conv1') add2_norm1 = ops._norm(add2_conv1, self.is_training, self.norm) add2_relu1 = ops.relu(add2_norm1) with tf.variable_scope("add2_conv2", reuse=self.reuse): add2_conv = tf.layers.conv2d( inputs=add2_relu1, filters=self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='add2_conv2') add2_norm2 = ops._norm(add2_conv, self.is_training, self.norm) add2_relu2 = ops.relu(add2_norm2) with tf.variable_scope("deconv3_r", reuse=self.reuse): resize3 = ops.uk_resize(add2_relu2, reuse=self.reuse, name='resize3') deconv3_r = tf.layers.conv2d( inputs=resize3, filters=self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='deconv3_r') deconv3_norm1_r = ops._norm(deconv3_r, self.is_training, self.norm) deconv3 = ops.relu(deconv3_norm1_r) with tf.variable_scope("concat2", reuse=self.reuse): concat3 = tf.concat([relu2, deconv3], axis=-1) with tf.variable_scope("add3_conv1", reuse=self.reuse): add3_conv1 = tf.layers.conv2d( inputs=concat3, filters=self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 2 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='add3_conv1') add3_norm1 = ops._norm(add3_conv1, self.is_training, self.norm) add3_relu1 = ops.relu(add3_norm1) with tf.variable_scope("add3_conv2", reuse=self.reuse): add3_conv2 = tf.layers.conv2d( inputs=add3_relu1, filters=self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='add3_conv2') add3_norm2 = ops._norm(add3_conv2, self.is_training, self.norm) add3_relu2 = ops.relu(add3_norm2) with tf.variable_scope("lastconv", reuse=self.reuse): lastconv = tf.layers.conv2d( inputs=add3_relu2, filters=self.output_channl, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='lastconv') lastnorm = ops._norm(lastconv, self.is_training, self.norm) output = tf.nn.sigmoid(lastnorm) self.reuse = True self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name) return output
def __call__(self, EC_input): """ Args: input: batch_size x width x height x 3 Returns: output: same size as input """ with tf.variable_scope(self.name): EC_input = tf.nn.dropout(EC_input, keep_prob=self.keep_prob) with tf.variable_scope("conv1", reuse=self.reuse): conv1 = tf.layers.conv2d( inputs=EC_input, filters=self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( stddev=0.01, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv1') # norm1 = ops._norm(conv1, self.is_training, self.norm) relu1 = ops.relu(conv1) with tf.variable_scope("conv2", reuse=self.reuse): conv2 = tf.layers.conv2d( inputs=relu1, filters=self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( stddev=0.01, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv2') # norm2 = ops._norm(conv2, self.is_training, self.norm) relu2 = ops.relu(conv2) # pool1 with tf.variable_scope("conv3", reuse=self.reuse): conv3 = tf.layers.conv2d( inputs=relu2, filters=2 * self.ngf, kernel_size=3, strides=self.slice_stride, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( stddev=0.01, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv3') # norm3 = ops._norm(conv3, self.is_training, self.norm) relu3 = ops.relu(conv3) with tf.variable_scope("conv4", reuse=self.reuse): conv4 = tf.layers.conv2d( inputs=relu3, filters=2 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( stddev=0.01, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv4') # norm4 = ops._norm(conv4, self.is_training, self.norm) relu4 = ops.relu(conv4) with tf.variable_scope("conv5", reuse=self.reuse): conv5 = tf.layers.conv2d( inputs=relu4, filters=4 * self.ngf, kernel_size=3, strides=self.slice_stride, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( stddev=0.01, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv5') # norm5 = ops._norm(conv5, self.is_training, self.norm) relu5 = tf.nn.relu(conv5) """ decoder """ with tf.variable_scope("conv6", reuse=self.reuse): conv6 = tf.layers.conv2d( inputs=relu5, filters=4 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( stddev=0.01, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv6') # add1_norm1 = ops._norm(add1_conv1, self.is_training, self.norm) relu6 = ops.relu(conv6) with tf.variable_scope("deconv7_r", reuse=self.reuse): resize1 = ops.uk_resize(relu6, reuse=self.reuse, name='resize1') deconv7_r = tf.layers.conv2d( inputs=resize1, filters=2 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( stddev=0.01, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='deconv7_r') # deconv1_norm1_r = ops._norm(deconv1_r, self.is_training, self.norm) deconv7_r += relu4 deconv7 = ops.relu(deconv7_r) with tf.variable_scope("conv8", reuse=self.reuse): conv8 = tf.layers.conv2d( inputs=deconv7, filters=2 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( stddev=0.01, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv8') # add1_norm2 = ops._norm(add1_conv2, self.is_training, self.norm) relu8 = ops.relu(conv8) with tf.variable_scope("deconv9_r", reuse=self.reuse): resize2 = ops.uk_resize(relu8, reuse=self.reuse, name='resize2') deconv9_r = tf.layers.conv2d( inputs=resize2, filters=self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( stddev=0.01, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='deconv9_r') # deconv2_norm1_r = ops._norm(deconv2_r, self.is_training, self.norm) deconv9_r += relu2 deconv9 = ops.relu(deconv9_r) with tf.variable_scope("conv10", reuse=self.reuse): conv10 = tf.layers.conv2d( inputs=deconv9, filters=self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( stddev=0.01, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv10') # add2_norm1 = ops._norm(add2_conv1, self.is_training, self.norm) relu10 = ops.relu(conv10) with tf.variable_scope("lastconv", reuse=self.reuse): lastconv = tf.layers.conv2d( inputs=relu10, filters=self.output_channl, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( stddev=0.01, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='lastconv') output = tf.nn.sigmoid(lastconv) self.reuse = True self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name) return output
def __call__(self, DC_input): """ Args: input: batch_size x width x height x N Returns: output: same size as input """ with tf.variable_scope(self.name, reuse=self.reuse): with tf.variable_scope("dense0", reuse=self.reuse): dense0 = tf.layers.dense( DC_input, units=DC_input.get_shape().as_list()[0] * 6 * 5 * self.ngf, name="dense0") with tf.variable_scope("dense1", reuse=self.reuse): dense1 = tf.layers.dense( dense0, units=DC_input.get_shape().as_list()[0] * 6 * 5 * 12 * self.ngf, name="dense0") dense1 = tf.reshape(dense1, shape=[ DC_input.get_shape().as_list()[0], 6, 5, 12 * self.ngf ]) # 6,5 with tf.variable_scope("conv0_1", reuse=self.reuse): conv0_1 = tf.layers.conv2d( inputs=dense1, filters=12 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 12 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv0_1') norm0_1 = ops._norm(conv0_1, self.is_training, self.norm) relu0_1 = ops.relu(norm0_1) # 6,5 with tf.variable_scope("deconv0_1_r", reuse=self.reuse): resize0_1 = ops.uk_resize(relu0_1, reuse=self.reuse, output_size=[12, 9], name='resize') deconv0_1_r = tf.layers.conv2d( inputs=resize0_1, filters=8 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 12 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='deconv0_1_r') deconv0_1_norm1_r = ops._norm(deconv0_1_r, self.is_training, self.norm) deconv0_1_relu1 = ops.relu(deconv0_1_norm1_r) # 12,9 with tf.variable_scope("conv0_2", reuse=self.reuse): conv0_2 = tf.layers.conv2d( inputs=deconv0_1_relu1, filters=8 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 8 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv0_2') norm0_2 = ops._norm(conv0_2, self.is_training, self.norm) relu0_2 = ops.relu(norm0_2) # 12,9 with tf.variable_scope("deconv0_2_r", reuse=self.reuse): resize0_2 = ops.uk_resize(relu0_2, reuse=self.reuse, output_size=[23, 18], name='resize') deconv0_2_r = tf.layers.conv2d( inputs=resize0_2, filters=6 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 8 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='deconv0_2_r') deconv0_2_norm1_r = ops._norm(deconv0_2_r, self.is_training, self.norm) deconv0_2_relu1 = ops.relu(deconv0_2_norm1_r) # 23, 18 with tf.variable_scope("conv0_3", reuse=self.reuse): conv0_3 = tf.layers.conv2d( inputs=deconv0_2_relu1, filters=6 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 6 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv0_3') norm0_3 = ops._norm(conv0_3, self.is_training, self.norm) relu0_3 = ops.relu(norm0_3) # 23, 18 with tf.variable_scope("deconv0_3_r", reuse=self.reuse): resize0_3 = ops.uk_resize(relu0_3, reuse=self.reuse, name='resize') deconv0_3_r = tf.layers.conv2d( inputs=resize0_3, filters=6 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 6 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='deconv0_3_r') deconv0_3_norm1_r = ops._norm(deconv0_3_r, self.is_training, self.norm) add0 = ops.relu(deconv0_3_norm1_r) # 46, 36 with tf.variable_scope("conv1", reuse=self.reuse): conv1 = tf.layers.conv2d( inputs=add0, filters=6 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 6 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv1') norm1 = ops._norm(conv1, self.is_training, self.norm) relu1 = ops.relu(norm1) with tf.variable_scope("deconv1_r", reuse=self.reuse): resize1 = ops.uk_resize(relu1, reuse=self.reuse, name='resize') deconv1_r = tf.layers.conv2d( inputs=resize1, filters=4 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 6 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='deconv1_r') deconv1_norm1_r = ops._norm(deconv1_r, self.is_training, self.norm) add1 = ops.relu(deconv1_norm1_r) with tf.variable_scope("add1_conv1", reuse=self.reuse): add1_conv1 = tf.layers.conv2d( inputs=add1, filters=4 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 4 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='add1_conv1') add1_norm1 = ops._norm(add1_conv1, self.is_training, self.norm) add1_relu1 = ops.relu(add1_norm1) with tf.variable_scope("add1_conv2", reuse=self.reuse): add1_conv2 = tf.layers.conv2d( inputs=add1_relu1, filters=4 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 4 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='add1_conv2') add1_norm2 = ops._norm(add1_conv2, self.is_training, self.norm) add1_relu2 = ops.relu(add1_norm2) with tf.variable_scope("deconv2_r", reuse=self.reuse): resize2 = ops.uk_resize(add1_relu2, reuse=self.reuse, name='resize') deconv2_r = tf.layers.conv2d( inputs=resize2, filters=2 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 4 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='deconv2_r') deconv2_norm1_r = ops._norm(deconv2_r, self.is_training, self.norm) add2 = ops.relu(deconv2_norm1_r) with tf.variable_scope("add2_conv1", reuse=self.reuse): add2_conv1 = tf.layers.conv2d( inputs=add2, filters=2 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 2 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='add2_conv1') add2_norm1 = ops._norm(add2_conv1, self.is_training, self.norm) add2_relu1 = ops.relu(add2_norm1) with tf.variable_scope("add2_conv2", reuse=self.reuse): add2_conv = tf.layers.conv2d( inputs=add2_relu1, filters=2 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 2 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='add2_conv2') add2_norm2 = ops._norm(add2_conv, self.is_training, self.norm) add2_relu2 = ops.relu(add2_norm2) with tf.variable_scope("conv2", reuse=self.reuse): conv2 = tf.layers.conv2d( inputs=add2_relu2, filters=self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 2 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv2') norm2 = ops._norm(conv2, self.is_training, self.norm) relu2 = ops.relu(norm2) with tf.variable_scope("lastconv", reuse=self.reuse): lastconv = tf.layers.conv2d( inputs=relu2, filters=self.output_channl, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='lastconv') lastnorm = ops._norm(lastconv, self.is_training, self.norm) output = tf.nn.sigmoid(lastnorm) self.reuse = True self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name) return output
def __call__(self, DC_input): """ Args: input: batch_size x width x height x N Returns: output: same size as input """ with tf.variable_scope(self.name, reuse=self.reuse): DC_input = tf.nn.dropout(DC_input, keep_prob=self.keep_prob) with tf.variable_scope("conv1", reuse=self.reuse): conv1 = tf.layers.conv2d(inputs=DC_input, filters=8 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 8 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv1') norm1 = ops.norm(conv1) relu1 = ops.relu(norm1) with tf.variable_scope("deconv1_r", reuse=self.reuse): resize1 = ops.uk_resize(relu1, reuse=self.reuse, name='resize1') deconv1_r = tf.layers.conv2d(inputs=resize1, filters=4 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 8 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='deconv1_r') deconv1_norm1_r = ops.norm(deconv1_r) add1 = ops.relu(deconv1_norm1_r) with tf.variable_scope("add1_conv1", reuse=self.reuse): add1_conv1 = tf.layers.conv2d(inputs=add1, filters=4 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 4 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='add1_conv1') add1_norm1 = ops.norm(add1_conv1) add1_relu1 = ops.relu(add1_norm1) with tf.variable_scope("add1_conv2", reuse=self.reuse): add1_conv2 = tf.layers.conv2d(inputs=add1_relu1, filters=4 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 4 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='add1_conv2') add1_norm2 = ops.norm(add1_conv2) add1_relu2 = ops.relu(add1_norm2) with tf.variable_scope("deconv2_r", reuse=self.reuse): resize2 = ops.uk_resize(add1_relu2, reuse=self.reuse, name='resize1') deconv2_r = tf.layers.conv2d(inputs=resize2, filters=2 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 4 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='deconv2_r') deconv2_norm1_r = ops.norm(deconv2_r) add2 = ops.relu(deconv2_norm1_r) with tf.variable_scope("add2_conv1", reuse=self.reuse): add2_conv1 = tf.layers.conv2d(inputs=add2, filters=2 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 2 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='add2_conv1') add2_norm1 = ops.norm(add2_conv1) add2_relu1 = ops.relu(add2_norm1) with tf.variable_scope("add2_conv2", reuse=self.reuse): add2_conv = tf.layers.conv2d(inputs=add2_relu1, filters=2 * self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 2 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='add2_conv2') add2_norm2 = ops.norm(add2_conv) add2_relu2 = ops.relu(add2_norm2) with tf.variable_scope("conv2", reuse=self.reuse): conv2 = tf.layers.conv2d(inputs=add2_relu2, filters=self.ngf, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * 2 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='conv2') norm2 = ops.norm(conv2) relu2 = ops.relu(norm2) with tf.variable_scope("lastconv", reuse=self.reuse): lastconv = tf.layers.conv2d(inputs=relu2, filters=self.output_channl, kernel_size=3, strides=1, padding="SAME", activation=None, kernel_initializer=tf.random_normal_initializer( mean=1.0 / (9.0 * self.ngf), stddev=0.000001, dtype=tf.float32), bias_initializer=tf.constant_initializer(0.0), name='lastconv') lastnorm = ops.norm(lastconv) output = tf.nn.sigmoid(lastnorm) self.reuse = True self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name) return output