Beispiel #1
0
    def __init__(self, data, forecast_len=FORECAST):
        if len(data) == 0: raise ValueError
        self.data = data
        self.forecast_len = forecast_len
        self.Z = [1., 0.]
        self.Q = 0.0
        
        self.fc = [None]*(len(data)+self.first_forecast_index()+forecast_len)
        self.p = [None]*len(self.fc)
        self.e = [None]*len(data)
        self.var = 10000.

        first = self.first_forecast_index()
        self.fc[first] = 2*data[1]-data[0]

        psi = vec([1])
        dfpmin(lambda x: -self.llh(exp(x),first+1), psi)
        self.p[first] = exp(psi[0]) #exp(psi[0]/10.)

        self.trend = 0
        self.zeta = 0

        n = len(self.data)
        if n > first+1:
            self.update(first+1)
            self.p[first] *= self.epsilon
            for i in range(first+2,n):
                self.update(i)

        # Compute forescast beyond the end of the given data
        # Use equations (2.38) in Durbin-Koopman. Basically, just set v_t = 0 and K_t = 0.
        for i in range(self.forecast_len):
            self.fc[n+i] = self.fc[n+i-1] + self.trend
            self.p[n+i] = self.p[n+i-1] + self.zeta #+ self.epsilon 
Beispiel #2
0
    def __init__ (self, data, forecast_len=FORECAST):
        self.data = data
        if len(data) == 0:
            raise ValueError
        n = len(data)
        self.forecast_len = forecast_len
        self.sigma = 0.
        self.nu = 0.
        self.fc = [None]*(n+self.forecast_len) # filtered states
        self.p = [None]*len(self.fc) # variances of predictions (not filtered states)

        idx = self.first_forecast_index()
        self.fc[idx] = self.data[0]
        psi = vec([1.0])
        dfpmin(lambda x: self.llh(exp(x),idx+1), psi)
        self.var = self.p[idx] = exp(psi[0]) + 1.

        if n > idx+1:
            self.update(idx+1)
            self.p[idx] *= self.sigma
            
            for i in range(idx+2,n):
                self.update(i)
                self.var = self.p[n-1]

        # Compute forescast beyond the end of the given data
        # Use equations (2.38) in Durbin-Koopman. Basically, just set v_t = 0 and K_t = 0.
        for i in range(self.forecast_len):
            self.fc[n+i] = self.fc[n-1]
            self.p[n+i] = self.p[n+i-1] + self.nu
Beispiel #3
0
    def update(self, k):
        psi = vec([1./self.scale, .5/self.scale, 1./self.scale])
        dfpmin(lambda x,y,z: self.llh(x,y,z,k), psi)

        eps = LLB.eps
        [t1,t2,t3] = psi
        self.Q[0] = t1**2+eps 
        self.Q[1] = (abs(t1)+eps)*t2
        self.Q[2] = t3**2+eps+t2**2 
        
        # self.Q[0] =  exp(self.scale*psi[0])
        # self.Q[1] = exp(self.scale*psi[0]/2.)*psi[1]
        # self.Q[2] = exp(self.scale*psi[2]) + psi[1]**2

        data = self.data[:k]

        a = [self.data[0][0],self.data[0][1]]
        P = [self.Q[0]+1., self.Q[1], self.Q[2]+1.]
        K = [0.]*3
        Fi = [1.,0.,1.]
        v = [0.]*2

        epsilon = 0.
        steady = False
        for i,detF in enumerate(self.next_state(data,1,a,v,P,K,Fi)):
            epsilon += v[0]*Fi[0]*v[0] + 2*v[0]*Fi[1]*v[1] +  v[1]*Fi[2]*v[1]
        epsilon /= 2.*k
        
        self.epsilon = epsilon
        self.Q = [epsilon*t for t in self.Q]
        self.P[k] = [(P[0]+1)*epsilon,P[1]*epsilon,(P[2]+1)*epsilon]
        self.a[k] = [a[0],a[1]]
Beispiel #4
0
    def update(self,k):
        psi = vec([1.0])
        dfpmin(lambda x: self.llh(exp(x),k+1), psi)
        q = exp(psi[0])

        data = self.data[:k+1]
        a = data[0]
        p = 1. + q
        sigma = 0.
        for i in range(1,k):
            [a,p,v,f] = self.update_kalman(data[i],a,p,q)
            sigma += v*v/f
        sigma /= (k-1)
        self.sigma = sigma
        self.nu = q*sigma
        self.fc[k] = a
        self.p[k] = (p+1+q)*sigma 
Beispiel #5
0
    def update(self, k):
        Z = [1., 0.]
        Q = 0.0
        
        psi = vec([1.0])
        dfpmin(lambda x: -self.llh(exp(x),k), psi)
        Q = zeta = exp(psi[0]) #exp(psi[0]/10.)
        
        a = [2.*self.data[1]-self.data[0],self.data[1]-self.data[0]]
        P = [5.+2.*zeta,3.+zeta, 3.+zeta,2.+zeta]
        P2 = [None]*4
        F = P[0]+1.0
        lF = log(F)
        K = [(P[0]+P[2])/F, P[2]/F]
        
        epsilon = 0.
        data = self.data[self.first_forecast_index():k]

        steady = False
        for y in data:
            if not steady:
                [v,F,lF] = self.update_kalman(y,a,P,P2,K,zeta)
                norm = 0
                for i in xrange(4):
                    norm += abs(P2[i]-P[i])
                if norm < 0.001:
                    steady = True
                for i in xrange(4):
                    P[i] = P2[i]
            else:
                v = self.steady_update(y,a,K)
                
            epsilon += v*v/F

        self.epsilon = epsilon/len(data)
        self.zeta = zeta*self.epsilon
        self.trend = a[1]
        self.fc[k] = a[0]
        self.var = self.p[k] = (P[0] + 1)*self.epsilon