Beispiel #1
0
class EngeFunction(AbstractQuadFieldSourceFunction):
	""" 
	The Enge function with parameters from Berz's paper 
	M.Berz, B. Erdelyn, K.Makino
  Fringe Field Effects in Small Rings of Large Acceptance
  Phys. Rev STAB, V3, 124001(2000)	
	"""
	def __init__(self, length_param, acceptance_diameter_param, cutoff_level = 0.01):
		self.length = length_param
		self.acceptance_diameter = acceptance_diameter_param
		self.a_arr = [0.296471,4.533219,-2.270982,1.068627,-0.036391,0.022261]	
		self.normalization= 1.0
		self.n_func_points = 500
		#-----find cut-off z value
		self.cutoff_z = self.acceptance_diameter		
		step = self.acceptance_diameter
		self.cutoff_level = cutoff_level
		self.cutoff_z = self._findCutOff(step, cutoff_level)
		#------------------------------------------------------
		self.func = Function()
		self._normalize()
		
	def setEngeCoefficients(self,a_arr):
		"""
		Sets new values for Enge function's coeffients.
		"""
		self.a_arr = a_arr
		step = self.length/2
		self.cutoff_z = self._findCutOff(step, self.cutoff_level)	
		self._normalize()
		
	def setCutOffLevel(self,cutoff_level):
		""" Sets the cutoff level for quad's  field """
		step = self.length/2
		self.cutoff_level = cutoff_level
		self.cutoff_z = self._findCutOff(step, cutoff_level)
		self._normalize()
		
	def setCutOffZ(self,cutoff_z):
		""" Sets the cutoff distance from the center of quad's field"""
		self.cutoff_z = cutoff_z
		self._normalize()
		
	def setLength(self,length):
		""" Sets the length of quad's field"""
		self.length = length
		step = self.length/2.0
		self.cutoff_z = self._findCutOff(step, self.cutoff_level)
		self._normalize()
		
	def setAcceptanceDiameter(self,acceptance_diameter):
		""" Sets the acceptance diameter of the quad """
		self.acceptance_diameter = acceptance_diameter
		step = self.length/2.0
		self.cutoff_z = self._findCutOff(step, self.cutoff_level)
		self._normalize()
		
	def setNumberOfPoints(self,n_func_points):
		""" Sets the number of points in the field function """
		self.n_func_points = n_func_points
		step = self.length/2.0
		self.cutoff_z = self._findCutOff(step, self.cutoff_level)
		self._normalize()
		
	def getCuttOffZ(self):
		""" Returns the cutoff distance from the center of quad's field"""
		return self.cutoff_z 
		
	def getNumberOfPoints(self):
		""" Returns the number of points in the field function """
		return self.n_func_points
		
	def _getTrueEngeFunc(self, x):
		""" Returns the quad's field at the distance x from the center """
		# x is the distance from the center of the magnet with the iron length l """
		x = (math.fabs(x) - self.length/2.0)/self.acceptance_diameter
		sum_exp = self.a_arr[0]
		x0 = x
		for i in range(1,len(self.a_arr)):
			sum_exp += self.a_arr[i]*x0
			x0 *= x
		if(abs(sum_exp) > 30.): sum_exp = 30.0*sum_exp/abs(sum_exp)
		return self.normalization/(1.0+math.exp(sum_exp))

	def _findCutOff(self,step, cutoff_level):
		""" Finds the distance from the center where the field is less than cutoff level """
		self.normalization = 1.0
		init_val = self._getTrueEngeFunc(0.)
		z = step
		val = self._getTrueEngeFunc(z)/init_val
		if(val <= cutoff_level):
			return z
		while(val > cutoff_level):
			z += step
			val = self._getTrueEngeFunc(z)/init_val
		z0 = z - step
		z1 = z
		step_z = step/self.n_func_points
		val0 =  self._getTrueEngeFunc(z0)/init_val
		val1 =  self._getTrueEngeFunc(z1)/init_val		
		while(abs(z0-z1) > step_z):
			z_new = (z0+z1)/2.0
			val_new = self._getTrueEngeFunc(z_new)/init_val
			if(val_new <= cutoff_level):
				z1 = z_new
				val1 = val_new
			else:
				z0 = z_new
				val0 = val_new			
		self.cutoff_z = (z0+z1)/2.0
		return self.cutoff_z
				
	def _normalize(self):
		""" Normalizes the quad field function to the integral of 1 """
		self.normalization = 1.0
		step = self.cutoff_z/(self.n_func_points - 1)
		self.func.clean()
		sum_int = 0.
		for ind in range(self.n_func_points):
			z = step*ind
			val = self._getTrueEngeFunc(z)
			self.func.add(z,val)
			sum_int += val
		sum_int -= (self._getTrueEngeFunc(0.) + self._getTrueEngeFunc(step*(self.n_func_points - 1)))/2.0
		sum_int *= 2.0*step
		self.normalization = 1.0/sum_int
		self.func.setConstStep(1)
		
	def getFuncValue(self,z):
		""" Returns the quad's field at the distance z from the center """
		if(abs(z) >= self.func.getMaxX()): return 0.
		return self.normalization*self.func.getY(abs(z))
		
	def getFuncDerivative(self,z):
		"""
		Returns the derivative of the getFuncValue(z)
		"""
		if(abs(z) >= self.func.getMaxX()): return 0.
		return 	math.copysign(self.normalization*self.func.getYP(abs(z)),-z)
		
	def getLimitsZ(self):
		""" Returns the tuple with min and max Z value for this field """
		z_max = self.func.getMaxX()
		return (-z_max,z_max)
Beispiel #2
0
n = 100
step = 2 * math.pi / n
for i in range(n):
    x = step * i + random.uniform(-eps * step, eps * step)
    y = FF(x)
    f.add(x, y)

f.dump()

# let's check  Const step tolerance setting procedure
f.setStepEps(4 * eps)
print "Const step tolerance =", f.getStepEps()
res = f.setConstStep(1)
print "Function has a const step on x-variable res=", res

print "==========================================="
print " x   abs(y-y_fit)  abs(dy/dx - dy/dx_fit) "

n = 20
step = 0.8 * (f.getMaxX() - f.getMinX()) / (n - 1)
y_dev_max = 0.
yp_dev_max = 0.
for j in range(n):
    x = f.getMinX() + 0.0001 + j * step
    y = f.getY(x)
    yp = f.getYP(x)
    y_th = FF(x)
    yp_th = FFP(x)
    st = "%6.5f " % x + " %10.5f  %10.5f " % (abs(y - y_th), abs(yp - yp_th))
    print st
Beispiel #3
0
class PMQ_Trace3D_Function(AbstractQuadFieldSourceFunction):
	""" 
	The PMQ Function is a represenatation of the field of permanent quad
	from Trace3D documantation (p 77): 
	http://laacg.lanl.gov/laacg/services/traceman.pdf
	"""
	def __init__(self, length_param, rad_in, rad_out, cutoff_level = 0.01):
		self.length = length_param
		self.rad_in = rad_in
		self.rad_out = rad_out
		self.cutoff_level = cutoff_level
		self.normalization = 1.0
		self.n_func_points = 500
		z_step = length_param/self.n_func_points
		z_cutoff = self._findCutOff(z_step,cutoff_level)
		self.z_min = - z_cutoff
		self.z_max = + z_cutoff
		self.func = Function()
		self._normalize()
		
	def _findCutOff(self,step, cutoff_level):
		""" Finds the distance from the center where the field is less than cutoff level """
		init_val = self.getPMQ_FuncValue(0.)
		z = step
		val = self.getPMQ_FuncValue(z)/init_val
		if(val <= cutoff_level):
			return z
		while(val > cutoff_level):
			z += step
			val = self.getPMQ_FuncValue(z)/init_val
		z0 = z - step
		z1 = z
		n_inner_points = 100
		step_z = step/n_inner_points
		val0 =  self.getPMQ_FuncValue(z0)/init_val
		val1 =  self.getPMQ_FuncValue(z1)/init_val		
		while(abs(z0-z1) > step_z):
			z_new = (z0+z1)/2.0
			val_new = self.getPMQ_FuncValue(z_new)/init_val
			if(val_new <= cutoff_level):
				z1 = z_new
				val1 = val_new
			else:
				z0 = z_new
				val0 = val_new			
		cutoff_z = (z0+z1)/2.0
		return cutoff_z
				
	def _normalize(self):
		""" Normalizes the quad field function to the integral of 1 """
		self.normalization = 1.0
		step = self.z_max/(self.n_func_points - 1)
		sum_int = 0.
		self.func.clean()
		for ind in range(self.n_func_points):
			z = step*ind
			val = self.getPMQ_FuncValue(z)
			self.func.add(z,val)
			sum_int += val
		sum_int -= (self.getPMQ_FuncValue(0.) + self.getPMQ_FuncValue(step*(self.n_func_points - 1)))/2.0
		sum_int *= 2.0*step
		self.normalization = 1.0/sum_int
				
	def getLimitsZ(self):
		"""
		Returns (z_min,z_max) tuple as longitudinal limits of the quad field.
		"""		
		return (self.z_min,self.z_max)
		
	def pmq_func(self,z):
		"""
		This is PMQ function defined at p. 77 of the Trace3D manual.
		"""
		r1 = self.rad_in
		r2 = self.rad_out
		v1 = 1.0/math.sqrt(1.0+(z/r1)**2)
		v2 = 1.0/math.sqrt(1.0+(z/r2)**2)
		f = 0.5*(1-0.125*z*(1.0/r1+1.0/r2)*v1**2*v2**2*(v1**2+v1*v2+v1**2+4+8/v1/v2)/(v1+v2))	
		return f
		
	def getPMQ_FuncValue(self,z):
		""" 
		Returns the total PMQ quad field distribution 
		"""		
		f = self.pmq_func(z - self.length/2) - self.pmq_func(z + self.length/2)
		return f

	def getFuncValue(self,z):
		""" Returns the quad's field at the distance z from the center """
		if(abs(z) >= self.func.getMaxX()): return 0.
		return self.normalization*self.func.getY(abs(z))
		
	def getFuncDerivative(self,z):
		"""
		Returns the derivative of the getFuncValue(z)
		"""
		if(abs(z) >= self.func.getMaxX()): return 0.
		return 	math.copysign(self.normalization*self.func.getYP(abs(z)),-z)