def process_amt_results(filename, output_dir, overwrite, gen_apprv_cmnt): input_file = basename(filename) input_file_base, input_file_ext = splitext(input_file) output_name = '{0}.{1}'.format(input_file_base, 'json') output_dir = dir_path(output_dir) output_file = dir_join(output_dir, output_name) results = read_results(filename) scene_data = extract_scene_data(results) save_json(scene_data, output_file, saveNonMin=False) assignment_ids = set([scene['assignmentId'] for scene in scene_data]) create_approval_file(assignment_ids, filename, gen_apprv_cmnt) create_reject_note_files(filename) counter = 0 filename_base, filename_ext = splitext(output_name) indv_output_dir = dir_path(dir_join(output_dir, filename_base + '_indv')) for scene_data_single in scene_data: #pdb.set_trace() new_fn = '{0}_{1:02d}{2}'.format(scene_data_single['assignmentId'], scene_data_single['hitIdx'], filename_ext) indv_output_file = dir_join(indv_output_dir, new_fn) # Skip if already exists and no overwrite flag if (not os.path.isfile(indv_output_file) or overwrite == True): save_json(scene_data_single, indv_output_file, saveNonMin=False) counter += 1 no_scene_data_name = '{0}_{1}{2}'.format(filename_base, 'noSceneData', filename_ext) no_scene_data_fn = dir_join(output_dir, no_scene_data_name) for scene_datum in scene_data: scene_datum['counts'] = extract_scene_stats(scene_datum['scene']) scene_datum['sceneType'] = scene_datum['scene']['sceneType'] del scene_datum['scene'] save_json(scene_data, no_scene_data_fn, saveNonMin=True) no_scene_data_name = '{0}_{1}{2}'.format(filename_base, 'noSceneNoCountsData', filename_ext) no_scene_data_fn = dir_join(output_dir, no_scene_data_name) for scene_datum in scene_data: del scene_datum['counts'] save_json(scene_data, no_scene_data_fn, saveNonMin=True)
def process_amt_results(filename, output_dir, overwrite, gen_apprv_cmnt): input_file = basename(filename) input_file_base, input_file_ext = splitext(input_file) output_name = "{0}.{1}".format(input_file_base, "json") output_dir = dir_path(output_dir) output_file = dir_join(output_dir, output_name) results = read_results(filename) scene_data = extract_scene_data(results) save_json(scene_data, output_file, saveNonMin=False) assignment_ids = set([scene["assignmentId"] for scene in scene_data]) create_approval_file(assignment_ids, filename, gen_apprv_cmnt) create_reject_note_files(filename) counter = 0 filename_base, filename_ext = splitext(output_name) indv_output_dir = dir_path(dir_join(output_dir, filename_base + "_indv")) for scene_data_single in scene_data: # pdb.set_trace() new_fn = "{0}_{1:02d}{2}".format(scene_data_single["assignmentId"], scene_data_single["hitIdx"], filename_ext) indv_output_file = dir_join(indv_output_dir, new_fn) # Skip if already exists and no overwrite flag if not os.path.isfile(indv_output_file) or overwrite == True: save_json(scene_data_single, indv_output_file, saveNonMin=False) counter += 1 no_scene_data_name = "{0}_{1}{2}".format(filename_base, "noSceneData", filename_ext) no_scene_data_fn = dir_join(output_dir, no_scene_data_name) for scene_datum in scene_data: scene_datum["counts"] = extract_scene_stats(scene_datum["scene"]) scene_datum["sceneType"] = scene_datum["scene"]["sceneType"] del scene_datum["scene"] save_json(scene_data, no_scene_data_fn, saveNonMin=True) no_scene_data_name = "{0}_{1}{2}".format(filename_base, "noSceneNoCountsData", filename_ext) no_scene_data_fn = dir_join(output_dir, no_scene_data_name) for scene_datum in scene_data: del scene_datum["counts"] save_json(scene_data, no_scene_data_fn, saveNonMin=True)
from os.path import abspath, dirname from os.path import join as dir_join import tensorflow as tf from configparser import SafeConfigParser # File hierarchy _python_dir = dirname(abspath(__file__)) _proyect_dir = dirname(_python_dir) _config_dir = dir_join(_proyect_dir, 'config') _log_dir_root = dir_join(_proyect_dir, 'log') _data_dir = dir_join(_proyect_dir, 'data') # Configuration parser cfg_parser = SafeConfigParser() cfg_parser.read(dir_join(_config_dir, 'cfg_model.ini')) # Private variables _initializer = cfg_parser.get(section='train', option='initializer') _normalization = cfg_parser.get(section='train', option='normalization') _batch_size = cfg_parser.getint(section='train', option='batch_size') def safe_div(numerator, denominator, name='safe_div'): """Divides two values, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator`
# Django settings for {{ project_name }} project. from os.path import join as dir_join import sys PROJECT_ROOT = '{{ project_directory }}' sys.path.append(dir_join(PROJECT_ROOT, 'apps')) DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('Your Name', '*****@*****.**'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': 'dev.{{ project_name }}.db', # Or path to database file if using sqlite3. 'USER': '', # Not used with sqlite3. 'PASSWORD': '', # Not used with sqlite3. 'HOST': '', # Set to empty string for localhost. Not used with sqlite3. 'PORT': '', # Set to empty string for default. Not used with sqlite3. } } # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name