Beispiel #1
0
def test_warnings():
    n = 100  # nb bins
    m = 100  # nb bins

    mean1 = 30
    mean2 = 50

    # bin positions
    x = np.arange(n, dtype=np.float64)
    y = np.arange(m, dtype=np.float64)

    # Gaussian distributions
    a = gauss(n, m=mean1, s=5)  # m= mean, s= std

    b = gauss(m, m=mean2, s=10)

    # loss matrix
    M = ot.dist(x.reshape((-1, 1)), y.reshape((-1, 1)))**(1. / 2)

    print('Computing {} EMD '.format(1))
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")
        print('Computing {} EMD '.format(1))
        ot.emd(a, b, M, numItermax=1)
        assert "numItermax" in str(w[-1].message)
Beispiel #2
0
def test_emd2_multi():

    from ot.datasets import get_1D_gauss as gauss

    n = 1000  # nb bins

    # bin positions
    x = np.arange(n, dtype=np.float64)

    # Gaussian distributions
    a = gauss(n, m=20, s=5)  # m= mean, s= std

    ls = np.arange(20, 1000, 20)
    nb = len(ls)
    b = np.zeros((n, nb))
    for i in range(nb):
        b[:, i] = gauss(n, m=ls[i], s=10)

    # loss matrix
    M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)))
    # M/=M.max()

    print('Computing {} EMD '.format(nb))

    # emd loss 1 proc
    ot.tic()
    emd1 = ot.emd2(a, b, M, 1)
    ot.toc('1 proc : {} s')

    # emd loss multipro proc
    ot.tic()
    emdn = ot.emd2(a, b, M)
    ot.toc('multi proc : {} s')

    np.testing.assert_allclose(emd1, emdn)
Beispiel #3
0
def test_emd2_multi():
    n = 500  # nb bins

    # bin positions
    x = np.arange(n, dtype=np.float64)

    # Gaussian distributions
    a = gauss(n, m=20, s=5)  # m= mean, s= std

    ls = np.arange(20, 500, 20)
    nb = len(ls)
    b = np.zeros((n, nb))
    for i in range(nb):
        b[:, i] = gauss(n, m=ls[i], s=10)

    # loss matrix
    M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)))
    # M/=M.max()

    print('Computing {} EMD '.format(nb))

    # emd loss 1 proc
    ot.tic()
    emd1 = ot.emd2(a, b, M, 1)
    ot.toc('1 proc : {} s')

    # emd loss multipro proc
    ot.tic()
    emdn = ot.emd2(a, b, M)
    ot.toc('multi proc : {} s')

    ot.tic()
    emdn2 = ot.emd2(a, b, M, dense=False)
    ot.toc('multi proc : {} s')

    np.testing.assert_allclose(emd1, emdn)
    np.testing.assert_allclose(emd1, emdn2, rtol=1e-6)

    # emd loss multipro proc with log
    ot.tic()
    emdn = ot.emd2(a, b, M, log=True, return_matrix=True)
    ot.toc('multi proc : {} s')

    for i in range(len(emdn)):
        emd = emdn[i]
        log = emd[1]
        cost = emd[0]
        check_duality_gap(a, b[:, i], M, log['G'], log['u'], log['v'], cost)
        emdn[i] = cost

    emdn = np.array(emdn)
    np.testing.assert_allclose(emd1, emdn)
Beispiel #4
0
def test_emd2_multi():
    n = 1000  # nb bins

    # bin positions
    x = np.arange(n, dtype=np.float64)

    # Gaussian distributions
    a = gauss(n, m=20, s=5)  # m= mean, s= std

    ls = np.arange(20, 1000, 20)
    nb = len(ls)
    b = np.zeros((n, nb))
    for i in range(nb):
        b[:, i] = gauss(n, m=ls[i], s=10)

    # loss matrix
    M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)))
    # M/=M.max()

    print('Computing {} EMD '.format(nb))

    # emd loss 1 proc
    ot.tic()
    emd1 = ot.emd2(a, b, M, 1)
    ot.toc('1 proc : {} s')

    # emd loss multipro proc
    ot.tic()
    emdn = ot.emd2(a, b, M)
    ot.toc('multi proc : {} s')

    np.testing.assert_allclose(emd1, emdn)

    # emd loss multipro proc with log
    ot.tic()
    emdn = ot.emd2(a, b, M, log=True, return_matrix=True)
    ot.toc('multi proc : {} s')

    for i in range(len(emdn)):
        emd = emdn[i]
        log = emd[1]
        cost = emd[0]
        check_duality_gap(a, b[:, i], M, log['G'], log['u'], log['v'], cost)
        emdn[i] = cost

    emdn = np.array(emdn)
    np.testing.assert_allclose(emd1, emdn)
Beispiel #5
0
def test_dual_variables():
    n = 500  # nb bins
    m = 600  # nb bins

    mean1 = 300
    mean2 = 400

    # bin positions
    x = np.arange(n, dtype=np.float64)
    y = np.arange(m, dtype=np.float64)

    # Gaussian distributions
    a = gauss(n, m=mean1, s=5)  # m= mean, s= std

    b = gauss(m, m=mean2, s=10)

    # loss matrix
    M = ot.dist(x.reshape((-1, 1)), y.reshape((-1, 1)))**(1. / 2)

    print('Computing {} EMD '.format(1))

    # emd loss 1 proc
    ot.tic()
    G, log = ot.emd(a, b, M, log=True)
    ot.toc('1 proc : {} s')

    ot.tic()
    G2 = ot.emd(b, a, np.ascontiguousarray(M.T))
    ot.toc('1 proc : {} s')

    cost1 = (G * M).sum()
    # Check symmetry
    np.testing.assert_array_almost_equal(cost1, (M * G2.T).sum())
    # Check with closed-form solution for gaussians
    np.testing.assert_almost_equal(cost1, np.abs(mean1 - mean2))

    # Check that both cost computations are equivalent
    np.testing.assert_almost_equal(cost1, log['cost'])
    check_duality_gap(a, b, M, G, log['u'], log['v'], log['cost'])

    constraint_violation = log['u'][:, None] + log['v'][None, :] - M

    assert constraint_violation.max() < 1e-8
Beispiel #6
0
def test_dual_variables():
    n = 5000  # nb bins
    m = 6000  # nb bins

    mean1 = 1000
    mean2 = 1100

    # bin positions
    x = np.arange(n, dtype=np.float64)
    y = np.arange(m, dtype=np.float64)

    # Gaussian distributions
    a = gauss(n, m=mean1, s=5)  # m= mean, s= std

    b = gauss(m, m=mean2, s=10)

    # loss matrix
    M = ot.dist(x.reshape((-1, 1)), y.reshape((-1, 1))) ** (1. / 2)

    print('Computing {} EMD '.format(1))

    # emd loss 1 proc
    ot.tic()
    G, log = ot.emd(a, b, M, log=True)
    ot.toc('1 proc : {} s')

    ot.tic()
    G2 = ot.emd(b, a, np.ascontiguousarray(M.T))
    ot.toc('1 proc : {} s')

    cost1 = (G * M).sum()
    # Check symmetry
    np.testing.assert_array_almost_equal(cost1, (M * G2.T).sum())
    # Check with closed-form solution for gaussians
    np.testing.assert_almost_equal(cost1, np.abs(mean1 - mean2))

    # Check that both cost computations are equivalent
    np.testing.assert_almost_equal(cost1, log['cost'])
    check_duality_gap(a, b, M, G, log['u'], log['v'], log['cost'])
Beispiel #7
0
def test_warnings():
    n = 100  # nb bins
    m = 100  # nb bins

    mean1 = 30
    mean2 = 50

    # bin positions
    x = np.arange(n, dtype=np.float64)
    y = np.arange(m, dtype=np.float64)

    # Gaussian distributions
    a = gauss(n, m=mean1, s=5)  # m= mean, s= std

    b = gauss(m, m=mean2, s=10)

    # loss matrix
    M = ot.dist(x.reshape((-1, 1)), y.reshape((-1, 1))) ** (1. / 2)

    print('Computing {} EMD '.format(1))
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")
        print('Computing {} EMD '.format(1))
        ot.emd(a, b, M, numItermax=1)
        assert "numItermax" in str(w[-1].message)
        assert len(w) == 1
        a[0] = 100
        print('Computing {} EMD '.format(2))
        ot.emd(a, b, M)
        assert "infeasible" in str(w[-1].message)
        assert len(w) == 2
        a[0] = -1
        print('Computing {} EMD '.format(2))
        ot.emd(a, b, M)
        assert "infeasible" in str(w[-1].message)
        assert len(w) == 3
Beispiel #8
0
# Generate data
# -------------

#%% parameters

n = 100  # nb bins
n_target = 50  # nb target distributions


# bin positions
x = np.arange(n, dtype=np.float64)

lst_m = np.linspace(20, 90, n_target)

# Gaussian distributions
a = gauss(n, m=20, s=5)  # m= mean, s= std

B = np.zeros((n, n_target))

for i, m in enumerate(lst_m):
    B[:, i] = gauss(n, m=m, s=5)

# loss matrix and normalization
M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)), 'euclidean')
M /= M.max()
M2 = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)), 'sqeuclidean')
M2 /= M2.max()

##############################################################################
# Plot data
# ---------
from ot.datasets import make_1D_gauss as gauss
from ot.bregman import screenkhorn

##############################################################################
# Generate data
# -------------

#%% parameters

n = 100  # nb bins

# bin positions
x = np.arange(n, dtype=np.float64)

# Gaussian distributions
a = gauss(n, m=20, s=5)  # m= mean, s= std
b = gauss(n, m=60, s=10)

# loss matrix
M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)))
M /= M.max()

##############################################################################
# Plot distributions and loss matrix
# ----------------------------------

#%% plot the distributions

pl.figure(1, figsize=(6.4, 3))
pl.plot(x, a, 'b', label='Source distribution')
pl.plot(x, b, 'r', label='Target distribution')
Beispiel #10
0
    return f
#
n = 100
n_traget = 41
#
x = np.arange(n, dtype=np.float64)
lst_m = np.linspace(20, 80, n_traget)
print(lst_m)

# gaussian distributions
f_kl = alpha_fn(alpha=1)
f_rkl = alpha_fn(alpha=0)
f_gan = alpha_fn(alpha='gan')

a = gauss(n, m=50, s=5)
p = lambda x: a[x]
B = np.zeros((n, n_traget))

kl_d = np.zeros(shape=n_traget)
reverse_kl = np.zeros(shape=n_traget)
gan = np.zeros(shape=n_traget)
for i, m in enumerate(lst_m):
    b = gauss(n, m=m, s=5)
    B[:, i] = b
    #
    q = lambda x: b[x]
    f_kld = lambda x: q(x) * f_kl(p(x) / q(x))
    f_rkld = lambda x: q(x) * f_rkl(p(x) / q(x))
    f_gand = lambda x: q(x) * f_gan(p(x) / q(x))
    for i_x in range(n):
Beispiel #11
0
def update_sd(sd):
    a = gauss(n, m=40, s=sd)
    b = gauss(n, m=50, s=10)
    Gs = ot.sinkhorn(a, b, M, 1e-2)
    pl = ot.plot.plot1D_mat(a, b, Gs, 'OT matrix G0')
    return pl,
Beispiel #12
0
import numpy as np
import matplotlib.pylab as pl
import ot
import ot.plot
from ot.datasets import make_1D_gauss as gauss
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation

n = 100  # nb bins

# bin positions
x = np.arange(n, dtype=np.float64)

# Gaussian distributions
a = gauss(n, m=20, s=5)
b = gauss(n, m=50, s=10)

# loss matrix
M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)))
M /= M.max()

# change SD - sinkhorn
fig = plt.figure(3, figsize=(5, 5))


def update_sd(sd):
    a = gauss(n, m=40, s=sd)
    b = gauss(n, m=50, s=10)
    Gs = ot.sinkhorn(a, b, M, 1e-2)
    pl = ot.plot.plot1D_mat(a, b, Gs, 'OT matrix G0')
Beispiel #13
0
"""

import numpy as np
import matplotlib.pylab as pl
import ot
from ot.datasets import get_1D_gauss as gauss

#%% parameters

n = 100  # nb bins

# bin positions
x = np.arange(n, dtype=np.float64)

# Gaussian distributions
a = gauss(n, m=20, s=20)  # m= mean, s= std
b = gauss(n, m=60, s=60)

# loss matrix
M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)))
M /= M.max()

#%% plot the distributions

pl.figure(1)
pl.plot(x, a, 'b', label='Source distribution')
pl.plot(x, b, 'r', label='Target distribution')
pl.legend()

#%% plot distributions and loss matrix
Beispiel #14
0
import numpy as np
import pylab as pl
import ot

from ot.datasets import get_1D_gauss as gauss
reload(ot.lp)

#%% parameters

n = 5000  # nb bins

# bin positions
x = np.arange(n, dtype=np.float64)

# Gaussian distributions
a = gauss(n, m=20, s=5)  # m= mean, s= std

ls = list(range(20, 1000, 10))
nb = len(ls)
b = np.zeros((n, nb))
for i in range(nb):
    b[:, i] = gauss(n, m=ls[i], s=10)

# loss matrix
M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)))
#M/=M.max()

#%%

print(('Computing {} EMD '.format(nb)))
Beispiel #15
0
import numpy as np
import matplotlib.pylab as pl
import ot
from ot.datasets import get_1D_gauss as gauss


#%% parameters

n=100 # nb bins

# bin positions
x=np.arange(n,dtype=np.float64)

# Gaussian distributions
a=gauss(n,m=n*.2,s=5) # m= mean, s= std
b=gauss(n,m=n*.6,s=10)

# loss matrix
M=ot.dist(x.reshape((n,1)),x.reshape((n,1)))
M/=M.max()

#%% plot the distributions

pl.figure(1)
pl.plot(x,a,'b',label='Source distribution')
pl.plot(x,b,'r',label='Target distribution')
pl.legend()

#%% plot distributions and loss matrix