Beispiel #1
0
def denormalize(image):
    channels = [
        np.expand_dims(image[:, :, channel] * stddev[channel] + mean[channel],
                       -1) for channel in range(3)
    ]
    denormalized_image = ctfi.rescale(np.concatenate(channels, 2), 0.0, 1.0)
    return denormalized_image
def main(argv):
    parser = argparse.ArgumentParser(description='Display image from dataset')
    parser.add_argument('dataset', type=str, help='Image file to display.')
    parser.add_argument(
        'key',
        type=str,
        help='Key of feature that contains image to be displayed.')
    parser.add_argument('size', type=int, help='Size of samples in dataset.')
    parser.add_argument('position',
                        type=int,
                        help='Position of sample to plot in dataset.')
    args = parser.parse_args()

    features = [{
        'shape': [args.size, args.size, 3],
        'key': args.key,
        'dtype': tf.float32
    }]
    decode_op = ctfd.construct_decode_op(features)

    dataset = tf.data.TFRecordDataset(args.dataset).map(decode_op,
                                                        num_parallel_calls=8)
    image = tf.data.experimental.get_single_element(
        dataset.skip(args.position).take(1))[args.key]

    plt.imshow(ctfi.rescale(image.numpy(), 0.0, 1.0))
    plt.show()
def main(argv):
    parser = argparse.ArgumentParser(
        description='Compute codes and reconstructions for image.')
    parser.add_argument('export_dir', type=str, help='Path to saved model.')
    parser.add_argument(
        'mean',
        type=str,
        help='Path to npy file holding mean for normalization.')
    parser.add_argument(
        'variance',
        type=str,
        help='Path to npy file holding variance for normalization.')
    parser.add_argument('source_filename',
                        type=str,
                        help='Image file from which to extract patch.')
    parser.add_argument('source_image_size',
                        type=int,
                        nargs=2,
                        help='Size of the input image, HW.')
    parser.add_argument('offsets',
                        type=int,
                        nargs=2,
                        help='Position where to extract the patch.')
    parser.add_argument('patch_size', type=int, help='Size of image patch.')
    parser.add_argument('target_filename',
                        type=str,
                        help='Image file for which to create the heatmap.')
    parser.add_argument(
        'target_image_size',
        type=int,
        nargs=2,
        help='Size of the input image for which to create heatmap, HW.')
    parser.add_argument(
        'method',
        type=str,
        help=
        'Method to use to measure similarity, one of KLD, SKLD, BD, HD, SQHD.')
    parser.add_argument(
        '--stain_code_size',
        type=int,
        dest='stain_code_size',
        default=0,
        help=
        'Optional: Size of the stain code to use, which is skipped for similarity estimation'
    )
    parser.add_argument('--rotate',
                        type=float,
                        dest='angle',
                        default=0,
                        help='Optional: rotation angle to rotate target image')
    parser.add_argument('--subsampling_factor',
                        type=int,
                        dest='subsampling_factor',
                        default=1,
                        help='Factor to subsample source and target image.')
    args = parser.parse_args()

    mean = np.load(args.mean)
    variance = np.load(args.variance)
    stddev = [np.math.sqrt(x) for x in variance]

    def denormalize(image):
        channels = [
            np.expand_dims(
                image[:, :, channel] * stddev[channel] + mean[channel], -1)
            for channel in range(3)
        ]
        denormalized_image = ctfi.rescale(np.concatenate(channels, 2), 0.0,
                                          1.0)
        return denormalized_image

    def normalize(image, name=None):
        channels = [
            tf.expand_dims(
                (image[:, :, :, channel] - mean[channel]) / stddev[channel],
                -1) for channel in range(3)
        ]
        return tf.concat(channels, 3, name=name)

    latest_checkpoint = tf.train.latest_checkpoint(args.export_dir)
    saver = tf.train.import_meta_graph(latest_checkpoint + '.meta',
                                       import_scope='imported')

    with tf.Session(graph=tf.get_default_graph()).as_default() as sess:

        # Load image and extract patch from it and create distribution.
        source_image = ctfi.subsample(
            ctfi.load(args.source_filename,
                      height=args.source_image_size[0],
                      width=args.source_image_size[1]),
            args.subsampling_factor)
        args.source_image_size = list(
            map(lambda x: int(x / args.subsampling_factor),
                args.source_image_size))

        patch = normalize(
            tf.expand_dims(
                tf.image.crop_to_bounding_box(source_image, args.offsets[0],
                                              args.offsets[1], args.patch_size,
                                              args.patch_size), 0))

        patch_cov, patch_mean = tf.contrib.graph_editor.graph_replace([
            sess.graph.get_tensor_by_name('imported/z_log_sigma_sq/BiasAdd:0'),
            sess.graph.get_tensor_by_name('imported/z_mean/BiasAdd:0')
        ], {sess.graph.get_tensor_by_name('imported/patch:0'):
            patch})
        #patch_distribution = tf.contrib.distributions.MultivariateNormalTriL(loc=patch_mean[:,args.stain_code_size:], scale_tril=patch_cov[:,args.stain_code_size:,args.stain_code_size:])
        patch_descriptor = tf.concat([
            patch_mean[:, args.stain_code_size:],
            tf.layers.flatten(patch_cov[:, args.stain_code_size:])
        ], -1)
        sim_vals = []

        structure_code_size = patch_mean.get_shape().as_list(
        )[1] - args.stain_code_size

        #Load image for which to create the heatmap
        target_image = ctfi.subsample(
            ctfi.load(args.target_filename,
                      height=args.target_image_size[0],
                      width=args.target_image_size[1]),
            args.subsampling_factor)
        args.target_image_size = list(
            map(lambda x: int(x / args.subsampling_factor),
                args.target_image_size))

        target_image = tf.contrib.image.rotate(target_image,
                                               np.radians(args.angle))

        heatmap_height = args.target_image_size[0] - (args.patch_size - 1)
        heatmap_width = args.target_image_size[1] - (args.patch_size - 1)

        # Compute byte size as: width*height*channels*sizeof(float32)
        patch_size_in_byte = args.patch_size**2 * 3 * 4
        max_patches = int(max_patch_buffer_size / patch_size_in_byte)
        max_num_rows = int(max_patches / heatmap_width)
        max_chunk_size = int(max_buffer_size_in_byte / patch_size_in_byte)

        #Iteration over image regions that we can load
        num_iterations = int(args.target_image_size[0] / max_num_rows) + 1

        all_chunks = list()
        all_similarities = list()
        chunk_tensors = list()

        chunk_sizes = np.zeros(num_iterations, dtype=np.int)
        chunk_sizes.fill(heatmap_width)

        for i in range(num_iterations):
            processed_rows = i * max_num_rows
            rows_to_load = min(max_num_rows + (args.patch_size - 1),
                               args.target_image_size[0] - processed_rows)

            if rows_to_load < args.patch_size:
                break

            # Extract region for which we can compute patches
            target_image_region = tf.image.crop_to_bounding_box(
                target_image, processed_rows, 0, rows_to_load,
                args.target_image_size[1])

            # Size = (image_width - patch_size - 1) * (image_height - patch_size - 1) for 'VALID' padding and
            # image_width * image_height for 'SAME' padding
            all_image_patches = tf.unstack(
                normalize(
                    ctfi.extract_patches(target_image_region,
                                         args.patch_size,
                                         strides=[1, 1, 1, 1],
                                         padding='VALID')))

            possible_chunk_sizes = get_divisors(len(all_image_patches))
            for size in possible_chunk_sizes:
                if size < max_chunk_size:
                    chunk_sizes[i] = size
                    break

            # Partition patches into chunks
            chunked_patches = list(
                create_chunks(all_image_patches, chunk_sizes[i]))
            chunked_patches = list(map(tf.stack, chunked_patches))
            all_chunks.append(chunked_patches)

            chunk_tensor = tf.placeholder(
                tf.float32,
                shape=[chunk_sizes[i], args.patch_size, args.patch_size, 3],
                name='chunk_tensor_placeholder')
            chunk_tensors.append(chunk_tensor)

            image_patches_cov, image_patches_mean = tf.contrib.graph_editor.graph_replace(
                [
                    sess.graph.get_tensor_by_name(
                        'imported/z_log_sigma_sq/BiasAdd:0'),
                    sess.graph.get_tensor_by_name('imported/z_mean/BiasAdd:0')
                ], {
                    sess.graph.get_tensor_by_name('imported/patch:0'):
                    chunk_tensor
                })
            image_patches_descriptors = tf.concat([
                image_patches_mean[:, args.stain_code_size:],
                tf.layers.flatten(image_patches_cov[:, args.stain_code_size:])
            ], -1)

            distances = dist_kl(patch_descriptor, image_patches_descriptors,
                                structure_code_size)
            similarities = tf.squeeze(distances)

            all_similarities.append(similarities)

        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())
        saver.restore(sess, latest_checkpoint)

        for i in range(len(all_chunks)):
            for chunk in all_chunks[i]:
                #chunk_vals = sess.run(all_similarities[i], feed_dict={chunk_tensors[i]: sess.run(chunk)})
                sim_vals.extend(
                    sess.run(all_similarities[i],
                             feed_dict={chunk_tensors[i]: sess.run(chunk)}))

        print(len(sim_vals))
        sim_heatmap = np.reshape(sim_vals, [heatmap_height, heatmap_width])
        heatmap_tensor = tf.expand_dims(
            tf.expand_dims(tf.convert_to_tensor(sim_heatmap), -1), 0)
        dy, dx = tf.image.image_gradients(heatmap_tensor)
        sim_vals_normalized = 1.0 - ctfi.rescale(sim_heatmap, 0.0, 1.0)

        k_min = 20
        min_indices = np.unravel_index(
            np.argsort(sim_vals)[:k_min], sim_heatmap.shape)
        fig_min, ax_min = plt.subplots(4, 5)

        for i in range(k_min):
            target_patch = tf.image.crop_to_bounding_box(
                target_image, int(min_indices[0][i]), int(min_indices[1][i]),
                args.patch_size, args.patch_size)
            ax_min[int(i / 5), int(i % 5)].imshow(sess.run(target_patch))
            ax_min[int(i / 5),
                   int(i % 5)].set_title('y:' + str(min_indices[0][i]) +
                                         ', x:' + str(min_indices[1][i]))

        fig, ax = plt.subplots(2, 3)
        cmap = 'plasma'

        denormalized_patch = denormalize(sess.run(patch)[0])
        max_sim_val = np.max(sim_vals)
        max_idx = np.unravel_index(np.argmin(sim_heatmap), sim_heatmap.shape)

        target_image_patch = tf.image.crop_to_bounding_box(
            target_image, max_idx[0], max_idx[1], args.patch_size,
            args.patch_size)
        print(max_idx)

        print(min_indices)
        ax[1, 0].imshow(sess.run(source_image))
        ax[1, 1].imshow(sess.run(target_image))
        ax[0, 0].imshow(denormalized_patch)
        heatmap_image = ax[0, 2].imshow(sim_heatmap, cmap=cmap)
        ax[0, 1].imshow(sess.run(target_image_patch))
        #dx_image = ax[0,2].imshow(np.squeeze(sess.run(dx)), cmap='bwr')
        #dy_image = ax[1,2].imshow(np.squeeze(sess.run(dy)), cmap='bwr')
        gradient_image = ax[1, 2].imshow(np.squeeze(sess.run(dx + dy)),
                                         cmap='bwr')

        fig.colorbar(heatmap_image, ax=ax[0, 2])
        #fig.colorbar(dx_image, ax=ax[0,2])
        #fig.colorbar(dy_image, ax=ax[1,2])
        fig.colorbar(gradient_image, ax=ax[1, 2])

        plt.show()
        sess.close()
    print("Done!")
    return 0
Beispiel #4
0
def main(argv):
    parser = argparse.ArgumentParser(
        description='Compute latent code for image patch by model inference.')
    parser.add_argument('export_dir',
                        type=str,
                        help='Path to saved model to use for inference.')

    args = parser.parse_args()

    width = 512
    height = 512
    channels = 3

    filename_target = os.path.join(git_root, 'data', 'images',
                                   'HE_level_1_cropped_512x512.png')
    image_target = tf.expand_dims(
        ctfi.load(filename_target,
                  width=width,
                  height=height,
                  channels=channels), 0)
    image_target = tf.reshape(image_target, shape=[1, 512, 512, 3])
    image_target = tf.contrib.image.rotate(image_target, 0.05 * math.pi)

    filename_moving = os.path.join(git_root, 'data', 'images',
                                   'HE_level_1_cropped_512x512.png')
    image_moving = tf.expand_dims(
        ctfi.load(filename_moving,
                  width=width,
                  height=height,
                  channels=channels), 0)
    image_moving = tf.reshape(image_moving, shape=[1, 512, 512, 3])
    image_moving = tf.contrib.image.rotate(image_moving, -0.05 * math.pi)

    step = tf.Variable(tf.zeros([], dtype=tf.float32))

    X, Y = np.mgrid[0:width:8j, 0:height:8j]
    positions = np.transpose(np.vstack([X.ravel(), Y.ravel()]))
    positions = tf.expand_dims(
        tf.convert_to_tensor(positions, dtype=tf.float32), 0)

    target_source_control_point_locations = tf.Variable(positions)
    moving_source_control_point_locations = tf.Variable(positions)
    dest_control_point_locations = tf.Variable(positions)

    warped_moving = tf.Variable(image_moving)
    warped_moving, flow_moving = tf.contrib.image.sparse_image_warp(
        warped_moving,
        moving_source_control_point_locations,
        dest_control_point_locations,
        name='sparse_image_warp_moving',
        interpolation_order=1,
        regularization_weight=0.01,
        #num_boundary_points=1
    )

    warped_target = tf.Variable(image_target)
    warped_target, flow_target = tf.contrib.image.sparse_image_warp(
        warped_target,
        target_source_control_point_locations,
        dest_control_point_locations,
        name='sparse_image_warp_target',
        interpolation_order=1,
        regularization_weight=0.01,
        #num_boundary_points=1
    )

    warped_target_patches = normalize(
        ctfi.extract_patches(warped_target[0], 32, strides=[1, 32, 32, 1]))
    warped_moving_patches = normalize(
        ctfi.extract_patches(warped_moving[0], 32, strides=[1, 32, 32, 1]))

    #warped_target_patches = normalize(tf.image.extract_glimpse(tf.tile(warped_target,[64,1,1,1]),[32,32],target_source_control_point_locations[0], centered=False))
    #warped_moving_patches = normalize(tf.image.extract_glimpse(tf.tile(warped_moving,[64,1,1,1]),[32,32],moving_source_control_point_locations[0], centered=False))

    #learning_rate = 0.05 # h_squared
    learning_rate = 0.05  # sym_kl
    #learning_rate = 0.05 # battacharyya
    #learning_rate = 1 #hellinger
    #learning_rate = 0.005 # ssd loss

    latest_checkpoint = tf.train.latest_checkpoint(args.export_dir)
    #saver_target = tf.train.import_meta_graph(latest_checkpoint + '.meta', import_scope='target')
    #saver_moving = tf.train.import_meta_graph(latest_checkpoint + '.meta', import_scope='moving')

    saver = tf.train.import_meta_graph(latest_checkpoint + '.meta',
                                       import_scope='imported')

    with tf.Session(graph=tf.get_default_graph()).as_default() as sess:
        #g = tf.Graph()
        #saved_model = predictor.from_saved_model('/sdb1/logs/examples/models/gae_sampler_v2_0/saved_model/1574232815', graph=sess.graph)

        #fetch_ops = ['max_pooling2d_4/MaxPool:0','init']
        #fetch_ops = ['z:0','init']
        #fetch_ops = ['z_mean/BiasAdd:0','z_covariance/MatrixBandPart:0']
        #fetch_ops.extend([v.name for v in g.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)])

        #warped_target_graph = tf.graph_util.import_graph_def(sess.graph.as_graph_def(), input_map={'patch:0': warped_target_patches}, return_elements=fetch_ops, name='target')
        #warped_moving_graph = tf.graph_util.import_graph_def(sess.graph.as_graph_def(),input_map={'patch:0': warped_moving_patches}, return_elements=fetch_ops, name='moving')

        #sess.run(warped_target_graph[2:])
        #sess.run(warped_moving_graph[2:])

        #target_cov, target_mean = tf.contrib.graph_editor.graph_replace([sess.graph.get_tensor_by_name('target/z_covariance/MatrixBandPart:0'),sess.graph.get_tensor_by_name('target/z_mean/BiasAdd:0')] ,{ sess.graph.get_tensor_by_name('target/patch:0'): warped_target_patches })
        #moving_cov, moving_mean = tf.contrib.graph_editor.graph_replace([sess.graph.get_tensor_by_name('moving/z_covariance/MatrixBandPart:0'),sess.graph.get_tensor_by_name('moving/z_mean/BiasAdd:0')] ,{ sess.graph.get_tensor_by_name('moving/patch:0'): warped_moving_patches })

        target_cov, target_mean = tf.contrib.graph_editor.graph_replace(
            [
                sess.graph.get_tensor_by_name(
                    'imported/z_covariance_lower_tri/MatrixBandPart:0'),
                sess.graph.get_tensor_by_name('imported/z_mean/BiasAdd:0')
            ], {
                sess.graph.get_tensor_by_name('imported/patch:0'):
                warped_target_patches
            })
        moving_cov, moving_mean = tf.contrib.graph_editor.graph_replace(
            [
                sess.graph.get_tensor_by_name(
                    'imported/z_covariance_lower_tri/MatrixBandPart:0'),
                sess.graph.get_tensor_by_name('imported/z_mean/BiasAdd:0')
            ], {
                sess.graph.get_tensor_by_name('imported/patch:0'):
                warped_moving_patches
            })

        #target_mean = warped_target_graph[0]#[:,6:]
        #target_cov = warped_target_graph[1]#[:,6:,6:]
        stain_code_size = 8
        N_target = tf.contrib.distributions.MultivariateNormalTriL(
            loc=target_mean[:, stain_code_size:],
            scale_tril=target_cov[:, stain_code_size:, stain_code_size:])

        #moving_mean = warped_moving_graph[0]#[:,6:]
        #moving_cov = warped_moving_graph[1]#[:,6:,6:]
        N_mov = tf.contrib.distributions.MultivariateNormalTriL(
            loc=moving_mean[:, stain_code_size:],
            scale_tril=moving_cov[:, stain_code_size:, stain_code_size:])

        sym_kl_div = N_target.kl_divergence(N_mov) + N_mov.kl_divergence(
            N_target)

        #h_squared = ctf.multivariate_squared_hellinger_distance(N_target, N_mov)
        #hellinger = tf.sqrt(h_squared)

        #batta_dist = ctf.bhattacharyya_distance(N_target, N_mov)

        #multi_kl_div = ctf.multivariate_kl_div(N_target, N_mov) + ctf.multivariate_kl_div(N_mov, N_target)

        loss = tf.reduce_sum(sym_kl_div)

        #loss = tf.reduce_sum(tf.math.squared_difference(warped_target_codes, warped_moving_codes))
        #loss = tf.reduce_sum(tf.sqrt(tf.math.squared_difference(image_code, warped_code)))
        #loss = tf.reduce_sum(tf.math.squared_difference(warped_target, warped_moving))

        optimizer = tf.contrib.optimizer_v2.GradientDescentOptimizer(
            learning_rate=learning_rate)

        compute_gradients = optimizer.compute_gradients(
            loss,
            var_list=[
                moving_source_control_point_locations,
                target_source_control_point_locations
            ])
        apply_gradients = optimizer.apply_gradients(compute_gradients,
                                                    global_step=step)

        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())

        #saver_target.restore(sess, latest_checkpoint)
        #saver_moving.restore(sess, latest_checkpoint)
        saver.restore(sess, latest_checkpoint)

        fig, ax = plt.subplots(3, 3)
        ax[0, 0].imshow(
            ctfi.rescale(image_target.eval(session=sess)[0], 0.0, 1.0))
        ax[0, 0].set_title('target')
        ax[0, 0].set_autoscale_on(False)

        ax[0, 1].imshow(
            ctfi.rescale((image_target + image_moving).eval(session=sess)[0],
                         0.0, 1.0))
        ax[0, 1].set_title('overlayed')
        ax[0, 1].set_autoscale_on(False)

        ax[0, 2].imshow(
            ctfi.rescale(image_moving.eval(session=sess)[0], 0.0, 1.0))
        ax[0, 2].set_title('moving')
        ax[0, 2].set_autoscale_on(False)

        plot_warped_target = ax[1, 0].imshow(
            ctfi.rescale(warped_target.eval(session=sess)[0], 0.0, 1.0))
        ax[1, 0].set_title('warped_target')
        ax[1, 0].set_autoscale_on(False)

        plot_overlayed = ax[1, 1].imshow(
            ctfi.rescale((warped_target + warped_moving).eval(session=sess)[0],
                         0.0, 1.0))
        ax[1, 1].set_title('warped_overlayed')
        ax[1, 1].set_autoscale_on(False)

        plot_warped_moving = ax[1, 2].imshow(
            ctfi.rescale(warped_moving.eval(session=sess)[0], 0.0, 1.0))
        ax[1, 2].set_title('warped_moving')
        ax[1, 2].set_autoscale_on(False)

        plot_diff_target = ax[2, 0].imshow(
            ctfi.rescale(
                tf.abs(image_target - warped_target).eval(session=sess)[0], 0.,
                1.))
        ax[2, 0].set_title('diff_target')
        ax[2, 0].set_autoscale_on(False)

        plot_diff_overlayed = ax[2, 1].imshow(
            ctfi.rescale(
                tf.abs(warped_target - warped_moving).eval(session=sess)[0],
                0., 1.))
        ax[2, 1].set_title('diff_overlayed')
        ax[2, 1].set_autoscale_on(False)

        plot_diff_moving = ax[2, 2].imshow(
            ctfi.rescale(
                tf.abs(image_moving - warped_moving).eval(session=sess)[0], 0.,
                1.))
        ax[2, 2].set_title('diff_moving')
        ax[2, 2].set_autoscale_on(False)

        dest_points = dest_control_point_locations.eval(session=sess)[0]
        moving_source_points = moving_source_control_point_locations.eval(
            session=sess)[0]
        target_source_points = target_source_control_point_locations.eval(
            session=sess)[0]

        plot_scatter_moving, = ax[1, 2].plot(moving_source_points[:, 0],
                                             moving_source_points[:, 1],
                                             's',
                                             marker='x',
                                             ms=5,
                                             color='orange')
        plot_scatter_target, = ax[1, 0].plot(target_source_points[:, 0],
                                             target_source_points[:, 1],
                                             's',
                                             marker='x',
                                             ms=5,
                                             color='orange')

        plot_moving_grad = ax[1, 2].quiver(
            moving_source_points[:, 0],  # X
            moving_source_points[:, 1],  # Y
            np.zeros_like(moving_source_points[:, 0]),
            np.zeros_like(moving_source_points[:, 0]),
            units='xy',
            angles='xy',
            scale_units='xy',
            scale=1)

        plot_target_grad = ax[1, 0].quiver(
            target_source_points[:, 0],  # X
            target_source_points[:, 1],  # Y
            np.zeros_like(target_source_points[:, 0]),
            np.zeros_like(target_source_points[:, 0]),
            units='xy',
            angles='xy',
            scale_units='xy',
            scale=1)

        plt.ion()
        fig.canvas.draw()
        fig.canvas.flush_events()
        plt.show()

        iterations = 5000
        print_iterations = 1
        accumulated_gradients = np.zeros_like(sess.run(compute_gradients))

        while step.value().eval(session=sess) < iterations:
            step_val = int(step.value().eval(session=sess))

            gradients = sess.run(compute_gradients)
            sess.run(apply_gradients)

            accumulated_gradients += gradients

            if step_val % print_iterations == 0 or step_val == iterations - 1:
                #moving_cov_val = sess.run(moving_cov)
                #target_cov_val = sess.run(target_cov)
                #moving_mean_val = sess.run(moving_mean)
                #target_mean_val = sess.run(target_mean)

                loss_val = loss.eval(session=sess)

                diff_moving = tf.abs(image_moving -
                                     warped_moving).eval(session=sess)
                diff_target = tf.abs(image_target -
                                     warped_target).eval(session=sess)
                diff = tf.abs(warped_target - warped_moving).eval(session=sess)

                #warped_code_eval = np.mean(warped_moving_codes.eval(session=sess))

                print("{0:d}\t{1:.4f}\t{2:.4f}\t{3:.4f}\t{4:.4f}".format(
                    step_val, loss_val, np.sum(diff_moving),
                    np.sum(diff_target), np.sum(diff)))

                plot_warped_target.set_data(
                    ctfi.rescale(warped_target.eval(session=sess)[0], 0., 1.))
                plot_warped_moving.set_data(
                    ctfi.rescale(warped_moving.eval(session=sess)[0], 0., 1.))
                plot_overlayed.set_data(
                    ctfi.rescale(
                        (warped_target + warped_moving).eval(session=sess)[0],
                        0., 1.))

                plot_diff_target.set_data(ctfi.rescale(diff_target[0], 0., 1.))
                plot_diff_moving.set_data(ctfi.rescale(diff_moving[0], 0., 1.))
                plot_diff_overlayed.set_data(ctfi.rescale(diff[0], 0., 1.))

                moving_gradients = learning_rate * np.squeeze(
                    accumulated_gradients[0][0])
                moving_points = np.squeeze(gradients[0][1])

                target_gradients = learning_rate * np.squeeze(
                    accumulated_gradients[1][0])
                target_points = np.squeeze(gradients[1][1])

                plot_scatter_moving.set_data(moving_points[:, 0],
                                             moving_points[:, 1])
                plot_scatter_target.set_data(target_points[:, 0],
                                             target_points[:, 1])

                plot_moving_grad.remove()
                plot_moving_grad = ax[1, 2].quiver(
                    moving_points[:, 0],  # X
                    moving_points[:, 1],  # Y
                    moving_gradients[:, 0],
                    moving_gradients[:, 1],
                    moving_gradients,
                    units='xy',
                    angles='xy',
                    scale_units='xy',
                    scale=1)

                plot_target_grad.remove()
                plot_target_grad = ax[1, 0].quiver(
                    target_points[:, 0],  # X
                    target_points[:, 1],  # Y
                    target_gradients[:, 0],
                    target_gradients[:, 1],
                    target_gradients,
                    units='xy',
                    angles='xy',
                    scale_units='xy',
                    scale=1)

                fig.canvas.draw()
                fig.canvas.flush_events()
                plt.show()

                accumulated_gradients.fill(0)

        print("Done!")
        plt.ioff()
        plt.show()

    sys.exit(0)
Beispiel #5
0
def main(argv):
    parser = argparse.ArgumentParser(
        description='Compute latent code for image patch by model inference.')
    parser.add_argument('export_dir',
                        type=str,
                        help='Path to saved model to use for inference.')

    args = parser.parse_args()

    filename = os.path.join(git_root, 'data', 'images',
                            'HE_level_1_cropped_512x512.png')
    image = tf.expand_dims(
        ctfi.load(filename, width=512, height=512, channels=3), 0)

    target_filename = os.path.join(git_root, 'data', 'images',
                                   'CD3_level_1_cropped_512x512.png')
    image_rotated = tf.Variable(
        tf.expand_dims(
            ctfi.load(target_filename, width=512, height=512, channels=3), 0))

    step = tf.Variable(tf.zeros([], dtype=tf.float32))

    X, Y = np.mgrid[0:512:8j, 0:512:8j]
    positions = np.transpose(np.vstack([X.ravel(), Y.ravel()]))
    positions = tf.expand_dims(
        tf.convert_to_tensor(positions, dtype=tf.float32), 0)

    source_control_point_locations = tf.Variable(positions)
    dest_control_point_locations = tf.Variable(positions)

    warped_image = tf.Variable(image_rotated)
    warped_image, flow = tf.contrib.image.sparse_image_warp(
        image_rotated,
        source_control_point_locations,
        dest_control_point_locations,
        name='sparse_image_warp',
        interpolation_order=1,
        regularization_weight=0.005,
        #num_boundary_points=1
    )

    image_patches = normalize(
        ctfi.extract_patches(image[0], 32, strides=[1, 16, 16, 1]))
    warped_patches = normalize(
        ctfi.extract_patches(warped_image[0], 32, strides=[1, 16, 16, 1]))

    learning_rate = 0.05

    latest_checkpoint = tf.train.latest_checkpoint(args.export_dir)
    saver = tf.train.import_meta_graph(latest_checkpoint + '.meta',
                                       import_scope='imported')

    with tf.Session(graph=tf.get_default_graph()).as_default() as sess:

        target_cov, target_mean = tf.contrib.graph_editor.graph_replace(
            [
                sess.graph.get_tensor_by_name(
                    'imported/z_covariance_lower_tri/MatrixBandPart:0'),
                sess.graph.get_tensor_by_name('imported/z_mean/BiasAdd:0')
            ],
            {sess.graph.get_tensor_by_name('imported/patch:0'): image_patches})
        moving_cov, moving_mean = tf.contrib.graph_editor.graph_replace([
            sess.graph.get_tensor_by_name(
                'imported/z_covariance_lower_tri/MatrixBandPart:0'),
            sess.graph.get_tensor_by_name('imported/z_mean/BiasAdd:0')
        ], {sess.graph.get_tensor_by_name('imported/patch:0'):
            warped_patches})

        N_target = tf.contrib.distributions.MultivariateNormalTriL(
            loc=target_mean[:, 6:], scale_tril=target_cov[:, 6:, 6:])
        N_mov = tf.contrib.distributions.MultivariateNormalTriL(
            loc=moving_mean[:, 6:], scale_tril=moving_cov[:, 6:, 6:])

        #h_squared = ctf.multivariate_squared_hellinger_distance(N_target, N_mov)
        #hellinger = tf.sqrt(h_squared)

        loss = tf.reduce_sum(
            N_target.kl_divergence(N_mov) + N_mov.kl_divergence(N_target))

        scipy_options = {'maxiter': 10000, 'disp': True, 'iprint': 10}
        scipy_optimizer = tf.contrib.opt.ScipyOptimizerInterface(
            loss,
            var_list=[source_control_point_locations],
            method='SLSQP',
            options=scipy_options)

        optimizer = tf.train.GradientDescentOptimizer(
            learning_rate=learning_rate)
        compute_gradients_source = optimizer.compute_gradients(
            loss, var_list=[source_control_point_locations])
        apply_gradients_source = optimizer.apply_gradients(
            compute_gradients_source, global_step=step)

        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())

        saver.restore(sess, latest_checkpoint)

        fig, ax = plt.subplots(2, 3)
        ax[0, 0].imshow(ctfi.rescale(image.eval(session=sess)[0], 0.0, 1.0))
        ax[0, 0].set_title('image')
        ax[0, 0].set_autoscale_on(False)

        #ax[0,0].plot([200],[200],'s',marker='x', ms=10, color='red')

        ax[0, 1].imshow(
            ctfi.rescale(image_rotated.eval(session=sess)[0], 0.0, 1.0))
        ax[0, 1].set_title('rotated')
        ax[0, 1].set_autoscale_on(False)
        plot_warped = ax[0, 2].imshow(
            ctfi.rescale(warped_image.eval(session=sess)[0], 0.0, 1.0))
        ax[0, 2].set_title('warped')
        ax[0, 2].set_autoscale_on(False)

        plot_diff_image = ax[1, 0].imshow(
            ctfi.rescale(
                tf.abs(image - warped_image).eval(session=sess)[0], 0., 1.))
        ax[1, 0].set_title('diff_image')
        ax[1, 0].set_autoscale_on(False)
        plot_diff_rotated = ax[1, 1].imshow(
            ctfi.rescale(
                tf.abs(image_rotated - warped_image).eval(session=sess)[0], 0.,
                1.))
        ax[1, 1].set_title('diff_rotated')
        ax[1, 1].set_autoscale_on(False)

        plot_flow = ax[1, 2].imshow(
            np.zeros_like(image[0, :, :, :].eval(session=sess)))

        #flow_mesh_x, flow_mesh_y = np.meshgrid(np.arange(0, 1024 * 10, 10), np.arange(0, 1024 * 10, 10))

        #plot_flow = ax[1,2].quiver(
        #    flow_mesh_x, # X
        #    flow_mesh_y, # Y
        #    np.zeros_like(flow_mesh_x),
        #    np.zeros_like(flow_mesh_y),
        #    units='xy',angles='xy', scale_units='xy', scale=10)

        ax[1, 2].set_title('flow')
        ax[1, 2].set_autoscale_on(False)

        dest_points = dest_control_point_locations.eval(session=sess)[0]
        source_points = source_control_point_locations.eval(session=sess)[0]

        plot_scatter_source, = ax[0, 1].plot(source_points[:, 0],
                                             source_points[:, 1],
                                             's',
                                             marker='x',
                                             ms=5,
                                             color='orange')
        plot_scatter_dest, = ax[0, 2].plot(dest_points[:, 0],
                                           dest_points[:, 1],
                                           's',
                                           marker='x',
                                           ms=5,
                                           color='green')

        plot_source_grad = ax[0, 1].quiver(
            source_points[:, 0],  # X
            source_points[:, 1],  # Y
            np.zeros_like(source_points[:, 0]),
            np.zeros_like(source_points[:, 0]),
            units='xy',
            angles='xy',
            scale_units='xy',
            scale=1)

        plot_dest_grad = ax[0, 2].quiver(
            dest_points[:, 0],  # X
            dest_points[:, 1],  # Y
            np.zeros_like(dest_points[:, 0]),
            np.zeros_like(dest_points[:, 0]),
            units='xy',
            angles='xy',
            scale_units='xy',
            scale=1)

        plt.ion()
        fig.canvas.draw()
        fig.canvas.flush_events()
        plt.show()

        #gradients = (tf.zeros_like(source_control_point_locations),tf.zeros_like(source_control_point_locations))

        iterations = 100000
        while step.value().eval(session=sess) < iterations:
            step_val = int(step.value().eval(session=sess))

            #scipy_optimizer.minimize(sess)

            gradients = sess.run(compute_gradients_source)
            sess.run(apply_gradients_source)

            if step_val % 100 == 0 or step_val == iterations - 1:
                loss_val = loss.eval(session=sess)
                grad_mean_source = np.mean(gradients[0][0])

                grad_mean_dest = 0.0  # np.mean(gradients[1][0])

                flow_field = flow.eval(session=sess)
                x, y = np.split(flow_field, 2, axis=3)
                flow_image = ctfi.rescale(
                    np.squeeze(np.concatenate([x, y, np.zeros_like(x)], 3)),
                    0.0, 1.0)

                diff_warp_rotated = tf.abs(image_rotated -
                                           warped_image).eval(session=sess)
                diff_image_warp = tf.abs(image -
                                         warped_image).eval(session=sess)

                print(
                    "{0:d}\t{1:.4f}\t{2:.4f}\t{3:.4f}\t{4:.4f}\t{5:.4f}\t{6:.4f}"
                    .format(step_val, loss_val,
                            grad_mean_source, grad_mean_dest,
                            np.mean(flow_field), np.sum(diff_warp_rotated),
                            np.sum(diff_image_warp)))

                plot_warped.set_data(
                    ctfi.rescale(warped_image.eval(session=sess)[0], 0., 1.))
                plot_diff_image.set_data(
                    ctfi.rescale(diff_image_warp[0], 0., 1.))
                plot_diff_rotated.set_data(
                    ctfi.rescale(diff_warp_rotated[0], 0., 1.))
                plot_flow.set_data(flow_image)

                #plot_flow.set_UVC(x,y, flow_field)

                dest_points = dest_control_point_locations.eval(
                    session=sess)[0]
                source_points = np.squeeze(gradients[0][1])

                plot_scatter_source.set_data(source_points[:, 0],
                                             source_points[:, 1])
                plot_scatter_dest.set_data(dest_points[:, 0], dest_points[:,
                                                                          1])

                source_gradients = np.squeeze(gradients[0][0])
                #dest_gradients = np.squeeze(gradients_dest[0][0])

                plot_source_grad.remove()
                plot_source_grad = ax[0, 1].quiver(
                    source_points[:, 0],  # X
                    source_points[:, 1],  # Y
                    source_gradients[:, 0],
                    source_gradients[:, 1],
                    source_gradients,
                    units='xy',
                    angles='xy',
                    scale_units='xy',
                    scale=1)

                #grid_plot = plot_grid(ax[0,1],source_points[:,0],source_points[:,1])

                #plot_dest_grad.remove()
                #plot_dest_grad = ax[0,2].quiver(
                #    dest_points[:,0], # X
                #    dest_points[:,1], # Y
                #    dest_gradients[:,0],
                #    dest_gradients[:,1],
                #    dest_gradients,
                #    units='xy',angles='xy', scale_units='xy', scale=1)

                # https://stackoverflow.com/questions/48911643/set-uvc-equivilent-for-a-3d-quiver-plot-in-matplotlib
                # new_segs = [ [ [x,y,z], [u,v,w] ] for x,y,z,u,v,w in zip(*segs.tolist()) ]
                # quivers.set_segments(new_segs)

                #plot_source_grad.set_UVC(
                #    source_gradients[:,0],
                #    source_gradients[:,1],
                #    source_gradients)

                #plot_dest_grad.set_UVC(
                #    dest_gradients[:,0],
                #    dest_gradients[:,1],
                #    dest_gradients)

                fig.canvas.draw()
                fig.canvas.flush_events()
                plt.show()

        print("Done!")
        plt.ioff()
        plt.show()

    sys.exit(0)