Beispiel #1
0
    def log_prob(self, value):
        """Log probability density/mass function.

        Args:
          value (Tensor): The input tensor.

        Returns:
          Tensor: log probability.The data type is same with value.

        """
        value = self._check_values_dtype_in_probs(self.low, value)
        if _non_static_mode():
            # ensure value in [low, high]
            lb_bool = self.low < value
            ub_bool = value < self.high

            lb = _C_ops.cast(lb_bool, 'in_dtype', lb_bool.dtype, 'out_dtype',
                             value.dtype)
            ub = _C_ops.cast(ub_bool, 'in_dtype', ub_bool.dtype, 'out_dtype',
                             value.dtype)
            return nn.log(lb * ub) - nn.log(self.high - self.low)

        name = self.name + '_log_prob'
        lb_bool = self.low < value
        ub_bool = value < self.high
        lb = tensor.cast(lb_bool, dtype=value.dtype)
        ub = tensor.cast(ub_bool, dtype=value.dtype)
        return elementwise_sub(nn.log(lb * ub),
                               nn.log(self.high - self.low),
                               name=name)
Beispiel #2
0
    def entropy(self):
        r"""Shannon entropy in nats.

        The entropy is

        .. math::

            entropy(\sigma) = 0.5 \\log (2 \pi e \sigma^2)

        In the above equation:

        * :math:`scale = \sigma`: is the std.

        Returns:
          Tensor: Shannon entropy of normal distribution.The data type is float32.

        """
        name = self.name + '_entropy'
        batch_shape = list((self.loc + self.scale).shape)
        zero_tmp = tensor.fill_constant_batch_size_like(
            self.loc + self.scale, batch_shape, self.dtype, 0.)
        return elementwise_add(0.5 + zero_tmp,
                               0.5 * math.log(2 * math.pi) + nn.log(
                                   (self.scale + zero_tmp)),
                               name=name)
Beispiel #3
0
    def entropy(self):
        """Shannon entropy in nats.
        Returns:
            Tensor: Shannon entropy of Categorical distribution. The data type is float32.

        Examples:
            .. code-block:: python
                import paddle
                from paddle.distribution import Categorical
                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]
                cat = Categorical(x)
                cat.entropy()
                # [1.77528]
        """
        name = self.name + '_entropy'
        logits = self.logits - nn.reduce_max(
            self.logits, dim=-1, keep_dim=True)
        e_logits = ops.exp(logits)
        z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True)
        prob = e_logits / z

        neg_entropy = nn.reduce_sum(prob * (logits - nn.log(z)),
                                    dim=-1,
                                    keep_dim=True)
        entropy = nn.scale(neg_entropy, scale=-1.0, name=name)
        return entropy
Beispiel #4
0
    def softmax_with_cross_entropy(self, shard_logit, shard_label):
        shard_max = nn.reduce_max(shard_logit, dim=1, keep_dim=True)
        global_max = collective._c_allreduce(shard_max,
                                             reduce_type='max',
                                             use_calc_stream=True)
        shard_logit_new = nn.elementwise_sub(shard_logit, global_max)

        shard_exp = ops.exp(shard_logit_new)
        shard_demon = nn.reduce_sum(shard_exp, dim=1, keep_dim=True)
        global_demon = collective._c_allreduce(shard_demon,
                                               reduce_type='sum',
                                               use_calc_stream=True)

        global_log_demon = nn.log(global_demon)
        shard_log_prob = shard_logit_new - global_log_demon
        shard_prob = ops.exp(shard_log_prob)

        shard_one_hot = nn.one_hot(shard_label,
                                   depth=self.shard_dim,
                                   allow_out_of_range=True)
        target_log_prob = nn.reduce_min(shard_log_prob * shard_one_hot,
                                        dim=1,
                                        keep_dim=True)
        shard_loss = nn.scale(target_log_prob, scale=-1.0)
        global_loss = collective._c_reducescatter(shard_loss,
                                                  nranks=self.nranks,
                                                  use_calc_stream=True)
        return global_loss, shard_prob
Beispiel #5
0
    def kl_divergence(self, other):
        """The KL-divergence between two Categorical distributions.
        Args:
            other (Categorical): instance of Categorical. The data type is float32.
        Returns:
            Tensor: kl-divergence between two Categorical distributions.

        Examples:
            .. code-block:: python
                import paddle
                from paddle.distribution import Categorical
                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]
                paddle.seed(200) # on CPU device
                y = paddle.rand([6])
                print(y)
                # [0.77663314 0.90824795 0.15685187
                #  0.04279523 0.34468332 0.7955718 ]
                cat = Categorical(x)
                cat2 = Categorical(y)
                cat.kl_divergence(cat2)
                # [0.071952]
        """
        name = self.name + '_kl_divergence'
        if not in_dygraph_mode():
            check_type(other, 'other', Categorical, 'kl_divergence')

        logits = self.logits - nn.reduce_max(
            self.logits, dim=-1, keep_dim=True)
        other_logits = other.logits - nn.reduce_max(
            other.logits, dim=-1, keep_dim=True)
        e_logits = ops.exp(logits)
        other_e_logits = ops.exp(other_logits)
        z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True)
        other_z = nn.reduce_sum(other_e_logits, dim=-1, keep_dim=True)
        prob = e_logits / z
        kl = nn.reduce_sum(
            prob * (logits - nn.log(z) - other_logits + nn.log(other_z)),
            dim=-1,
            keep_dim=True,
            name=name)

        return kl
Beispiel #6
0
    def entropy(self):
        r"""Shannon entropy in nats.

        The entropy is

        .. math::

            entropy(low, high) = \\log (high - low)

        Returns:
          Tensor: Shannon entropy of uniform distribution.The data type is float32.

        """
        name = self.name + '_entropy'
        return nn.log(self.high - self.low, name=name)
Beispiel #7
0
    def kl_divergence(self, other):
        r"""The KL-divergence between two normal distributions.

        The probability density function (pdf) is

        .. math::

            KL\_divergence(\mu_0, \sigma_0; \mu_1, \sigma_1) = 0.5 (ratio^2 + (\\frac{diff}{\sigma_1})^2 - 1 - 2 \\ln {ratio})

        .. math::

            ratio = \\frac{\sigma_0}{\sigma_1}
        
        .. math::

            diff = \mu_1 - \mu_0

        In the above equation:

        * :math:`loc = \mu_0`: is the mean of current Normal distribution.
        * :math:`scale = \sigma_0`: is the std of current Normal distribution.
        * :math:`loc = \mu_1`: is the mean of other Normal distribution.
        * :math:`scale = \sigma_1`: is the std of other Normal distribution.
        * :math:`ratio`: is the ratio of scales.
        * :math:`diff`: is the difference between means.

        Args:
            other (Normal): instance of Normal.

        Returns:
            Tensor: kl-divergence between two normal distributions.The data type is float32.

        """
        if not _non_static_mode():
            check_type(other, 'other', Normal, 'kl_divergence')

        name = self.name + '_kl_divergence'
        var_ratio = self.scale / other.scale
        var_ratio = (var_ratio * var_ratio)
        t1 = (self.loc - other.loc) / other.scale
        t1 = (t1 * t1)
        return elementwise_add(0.5 * var_ratio,
                               0.5 * (t1 - 1. - nn.log(var_ratio)),
                               name=name)
Beispiel #8
0
    def log_prob(self, value):
        """Log probability density/mass function.

        Args:
          value (Tensor): The input tensor.

        Returns:
          Tensor: log probability.The data type is same with value.

        """
        name = self.name + '_log_prob'
        value = self._check_values_dtype_in_probs(self.loc, value)

        var = self.scale * self.scale
        log_scale = nn.log(self.scale)
        return elementwise_sub(-1. * ((value - self.loc) *
                                      (value - self.loc)) / (2. * var),
                               log_scale + math.log(math.sqrt(2. * math.pi)),
                               name=name)
Beispiel #9
0
    def log_prob(self, value):
        """Log probabilities of the given category. Refer to ``probs`` method.
        Args:
            value (Tensor): The input tensor represents the selected category index.
        Returns:
            Tensor: Log probability.

        Examples:
            .. code-block:: python
                import paddle
                from paddle.distribution import Categorical
                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]
                cat = Categorical(x)
                value = paddle.to_tensor([2,1,3])
                cat.log_prob(value)
                # [-5.10271 -2.22287 -1.31061]
        """
        name = self.name + '_log_prob'

        return nn.log(self.probs(value), name=name)