def __init__(self, vocab_size, embedding_size, init_scale=0.1):
        # vocab_size定义了这个skipgram这个模型的词表大小
        # embedding_size定义了词向量的维度是多少
        # init_scale定义了词向量初始化的范围,一般来说,比较小的初始化范围有助于模型训练
        super(SkipGram, self).__init__()
        self.vocab_size = vocab_size
        self.embedding_size = embedding_size

        # 使用Embedding函数构造一个词向量参数
        # 这个参数的大小为:[self.vocab_size, self.embedding_size]
        # 数据类型为:float32
        # 这个参数的名称为:embedding_para
        # 这个参数的初始化方式为在[-init_scale, init_scale]区间进行均匀采样
        self.embedding = Embedding(
            num_embeddings=self.vocab_size,
            embedding_dim=self.embedding_size,
            weight_attr=paddle.ParamAttr(
                initializer=paddle.nn.initializer.Uniform(
                    low=-0.5 / embedding_size, high=0.5 / embedding_size)))
        # 使用Embedding函数构造另外一个词向量参数
        # 这个参数的大小为:[self.vocab_size, self.embedding_size]
        # 这个参数的初始化方式为在[-init_scale, init_scale]区间进行均匀采样
        self.embedding_out = Embedding(
            num_embeddings=self.vocab_size,
            embedding_dim=self.embedding_size,
            weight_attr=paddle.ParamAttr(
                initializer=paddle.nn.initializer.Uniform(
                    low=-0.5 / embedding_size, high=0.5 / embedding_size)))
Beispiel #2
0
 def __init__(self,
              hidden_size,
              vocab_size,
              num_steps=20,
              init_scale=0.1,
              is_sparse=False,
              dtype="float64"):
     super(SimpleNet, self).__init__()
     self.hidden_size = hidden_size
     self.vocab_size = vocab_size
     self.init_scale = init_scale
     self.num_steps = num_steps
     self.embedding = Embedding(
         self.vocab_size,
         self.hidden_size,
         sparse=True,
         weight_attr=paddle.ParamAttr(
             name='embedding_param',
             initializer=paddle.nn.initializer.Uniform(low=-init_scale,
                                                       high=init_scale)))
     self.softmax_weight = self.create_parameter(
         attr=paddle.ParamAttr(),
         shape=[self.hidden_size, self.vocab_size],
         dtype=dtype,
         default_initializer=paddle.nn.initializer.Uniform(
             low=-self.init_scale, high=self.init_scale))
     self.softmax_bias = self.create_parameter(
         attr=paddle.ParamAttr(),
         shape=[self.vocab_size],
         dtype=dtype,
         default_initializer=paddle.nn.initializer.Uniform(
             low=-self.init_scale, high=self.init_scale))
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.nn import Linear, Embedding, Conv2D
import numpy as np
import paddle.nn.functional as F

# 自定义一个用户ID数据
usr_id_data = np.random.randint(0, 6040, (2)).reshape((-1)).astype('int64')
print("输入的用户ID是:", usr_id_data)

USR_ID_NUM = 6040 + 1
# 定义用户ID的embedding层和fc层
usr_emb = Embedding(num_embeddings=USR_ID_NUM, embedding_dim=32, sparse=False)
usr_fc = Linear(in_features=32, out_features=32)

usr_id_var = paddle.to_tensor(usr_id_data)
usr_id_feat = usr_fc(usr_emb(usr_id_var))

usr_id_feat = F.relu(usr_id_feat)
print("用户ID的特征是:", usr_id_feat.numpy(), "\n其形状是:", usr_id_feat.shape)
Beispiel #4
0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.nn import Linear, Embedding, Conv2D
import numpy as np
import paddle.nn.functional as F

# 自定义一个用户年龄数据
usr_age_data = np.array((1, 18)).reshape(-1).astype('int64')
print("输入的用户年龄是:", usr_age_data)

# 对用户年龄信息做映射,并紧接着一个Linear层
# 年龄的最大ID是56,所以Embedding层size的第一个参数设置为56 + 1 = 57
USR_AGE_DICT_SIZE = 56 + 1

usr_age_emb = Embedding(num_embeddings=USR_AGE_DICT_SIZE, embedding_dim=16)
usr_age_fc = Linear(in_features=16, out_features=16)

usr_age = paddle.to_tensor(usr_age_data)
usr_age_feat = usr_age_emb(usr_age)
usr_age_feat = usr_age_fc(usr_age_feat)
usr_age_feat = F.relu(usr_age_feat)

print("用户年龄特征的数据特征是:", usr_age_feat.numpy(), "\n其形状是:", usr_age_feat.shape)
print("\n年龄 1 对应的特征是:", usr_age_feat.numpy()[0, :])
print("年龄 18 对应的特征是:", usr_age_feat.numpy()[1, :])
Beispiel #5
0
    def __init__(self, use_poster, use_mov_title, use_mov_cat, use_age_job,
                 fc_sizes):
        super(MovModel, self).__init__()

        # 将传入的name信息和bool型参数添加到模型类中
        self.use_mov_poster = use_poster
        self.use_mov_title = use_mov_title
        self.use_usr_age_job = use_age_job
        self.use_mov_cat = use_mov_cat
        self.fc_sizes = fc_sizes

        # 获取数据集的信息,并构建训练和验证集的数据迭代器
        Dataset = MovieLen(self.use_mov_poster)
        self.Dataset = Dataset
        self.trainset = self.Dataset.train_dataset
        self.valset = self.Dataset.valid_dataset
        self.train_loader = self.Dataset.load_data(dataset=self.trainset,
                                                   mode='train')
        self.valid_loader = self.Dataset.load_data(dataset=self.valset,
                                                   mode='valid')
        """ define network layer for embedding usr info """
        # 对电影ID信息做映射,并紧接着一个Linear层
        MOV_DICT_SIZE = Dataset.max_mov_id + 1
        self.mov_emb = Embedding(num_embeddings=MOV_DICT_SIZE,
                                 embedding_dim=32)
        self.mov_fc = Linear(32, 32)

        # 对电影类别做映射
        CATEGORY_DICT_SIZE = len(Dataset.movie_cat) + 1
        self.mov_cat_emb = Embedding(num_embeddings=CATEGORY_DICT_SIZE,
                                     embedding_dim=32)
        self.mov_cat_fc = Linear(32, 32)

        # 对电影名称做映射
        MOV_TITLE_DICT_SIZE = len(Dataset.movie_title) + 1
        self.mov_title_emb = Embedding(num_embeddings=MOV_TITLE_DICT_SIZE,
                                       embedding_dim=32)
        self.mov_title_conv = Conv2D(in_channels=1,
                                     out_channels=1,
                                     kernel_size=(3, 1),
                                     stride=(2, 1),
                                     padding=0)
        self.mov_title_conv2 = Conv2D(in_channels=1,
                                      out_channels=1,
                                      kernel_size=(3, 1),
                                      stride=1,
                                      padding=0)

        # 新建一个Linear层,用于整合电影特征
        self.mov_concat_embed = Linear(in_features=96, out_features=200)

        #电影特征和用户特征使用了不同的全连接层,不共享参数
        movie_sizes = [200] + self.fc_sizes
        acts = ["relu" for _ in range(len(self.fc_sizes))]
        self._movie_layers = []
        for i in range(len(self.fc_sizes)):
            linear = paddle.nn.Linear(
                in_features=movie_sizes[i],
                out_features=movie_sizes[i + 1],
                weight_attr=paddle.ParamAttr(
                    initializer=paddle.nn.initializer.Normal(
                        std=1.0 / math.sqrt(movie_sizes[i]))))
            self._movie_layers.append(linear)
            if acts[i] == 'relu':
                act = paddle.nn.ReLU()
                self._movie_layers.append(act)
Beispiel #6
0
    def __init__(self, use_poster, use_mov_title, use_mov_cat, use_age_job,fc_sizes):
        super(Model, self).__init__()

        # 将传入的name信息和bool型参数添加到模型类中
        self.use_mov_poster = use_poster
        self.use_mov_title = use_mov_title
        self.use_usr_age_job = use_age_job
        self.use_mov_cat = use_mov_cat
        self.fc_sizes=fc_sizes

        # 获取数据集的信息,并构建训练和验证集的数据迭代器
        Dataset = MovieLen(self.use_mov_poster)
        self.Dataset = Dataset
        self.trainset = self.Dataset.train_dataset
        self.valset = self.Dataset.valid_dataset
        self.train_loader = self.Dataset.load_data(dataset=self.trainset, mode='train')
        self.valid_loader = self.Dataset.load_data(dataset=self.valset, mode='valid')

        usr_embedding_dim=32
        gender_embeding_dim=16
        age_embedding_dim=16
        job_embedding_dim=16

        mov_embedding_dim=16
        category_embedding_dim=16
        title_embedding_dim=32

        """ define network layer for embedding usr info """
        USR_ID_NUM = Dataset.max_usr_id + 1

        # 对用户ID做映射,并紧接着一个Linear层
        self.usr_emb = Embedding(num_embeddings=USR_ID_NUM, embedding_dim=usr_embedding_dim, sparse=False)
        self.usr_fc = Linear(in_features=usr_embedding_dim, out_features=32)

        # 对用户性别信息做映射,并紧接着一个Linear层
        USR_GENDER_DICT_SIZE = 2
        self.usr_gender_emb = Embedding(num_embeddings=USR_GENDER_DICT_SIZE, embedding_dim=gender_embeding_dim)
        self.usr_gender_fc = Linear(in_features=gender_embeding_dim, out_features=16)

        # 对用户年龄信息做映射,并紧接着一个Linear层
        USR_AGE_DICT_SIZE = Dataset.max_usr_age + 1
        self.usr_age_emb = Embedding(num_embeddings=USR_AGE_DICT_SIZE, embedding_dim=age_embedding_dim)
        self.usr_age_fc = Linear(in_features=age_embedding_dim, out_features=16)

        # 对用户职业信息做映射,并紧接着一个Linear层
        USR_JOB_DICT_SIZE = Dataset.max_usr_job + 1
        self.usr_job_emb = Embedding(num_embeddings=USR_JOB_DICT_SIZE, embedding_dim=job_embedding_dim)
        self.usr_job_fc = Linear(in_features=job_embedding_dim, out_features=16)

        # 新建一个Linear层,用于整合用户数据信息
        self.usr_combined = Linear(in_features=80, out_features=200)

        """ define network layer for embedding usr info """
        # 对电影ID信息做映射,并紧接着一个Linear层
        MOV_DICT_SIZE = Dataset.max_mov_id + 1
        self.mov_emb = Embedding(num_embeddings=MOV_DICT_SIZE, embedding_dim=mov_embedding_dim)
        self.mov_fc = Linear(in_features=mov_embedding_dim, out_features=32)

        # 对电影类别做映射
        CATEGORY_DICT_SIZE = len(Dataset.movie_cat) + 1
        self.mov_cat_emb = Embedding(num_embeddings=CATEGORY_DICT_SIZE, embedding_dim=category_embedding_dim, sparse=False)
        self.mov_cat_fc = Linear(in_features=category_embedding_dim, out_features=32)

        # 对电影名称做映射
        MOV_TITLE_DICT_SIZE = len(Dataset.movie_title) + 1
        self.mov_title_emb = Embedding(num_embeddings=MOV_TITLE_DICT_SIZE, embedding_dim=title_embedding_dim, sparse=False)
        self.mov_title_conv = Conv2D(in_channels=1, out_channels=1, kernel_size=(3, 1), stride=(2,1), padding=0)
        self.mov_title_conv2 = Conv2D(in_channels=1, out_channels=1, kernel_size=(3, 1), stride=1, padding=0)

        # 新建一个Linear层,用于整合电影特征
        self.mov_concat_embed = Linear(in_features=96, out_features=200)

        user_sizes = [200] + self.fc_sizes
        acts = ["relu" for _ in range(len(self.fc_sizes))]
        self._user_layers = []
        for i in range(len(self.fc_sizes)):
            linear = paddle.nn.Linear(
                in_features=user_sizes[i],
                out_features=user_sizes[i + 1],
                weight_attr=paddle.ParamAttr(
                    initializer=paddle.nn.initializer.Normal(
                        std=1.0 / math.sqrt(user_sizes[i]))))
            self.add_sublayer('linear_user_%d' % i, linear)
            self._user_layers.append(linear)
            if acts[i] == 'relu':
                act = paddle.nn.ReLU()
                self.add_sublayer('user_act_%d' % i, act)
                self._user_layers.append(act)

        #电影特征和用户特征使用了不同的全连接层,不共享参数
        movie_sizes = [200] + self.fc_sizes
        acts = ["relu" for _ in range(len(self.fc_sizes))]
        self._movie_layers = []
        for i in range(len(self.fc_sizes)):
            linear = paddle.nn.Linear(
                in_features=movie_sizes[i],
                out_features=movie_sizes[i + 1],
                weight_attr=paddle.ParamAttr(
                    initializer=paddle.nn.initializer.Normal(
                        std=1.0 / math.sqrt(movie_sizes[i]))))
            self.add_sublayer('linear_movie_%d' % i, linear)
            self._movie_layers.append(linear)
            if acts[i] == 'relu':
                act = paddle.nn.ReLU()
                self.add_sublayer('movie_act_%d' % i, act)
                self._movie_layers.append(act)
Beispiel #7
0
import paddle
from paddle.nn import Linear, Embedding, Conv2D
import numpy as np
import paddle.nn.functional as F

FC_ID = Linear(in_features=32, out_features=200)
FC_JOB = Linear(in_features=16, out_features=200)
FC_AGE = Linear(in_features=16, out_features=200)
FC_GENDER = Linear(in_features=16, out_features=200)

# 自定义一个用户ID数据
usr_id_data = np.random.randint(0, 6040, (2)).reshape((-1)).astype('int64')
USR_ID_NUM = 6040 + 1
# 定义用户ID的embedding层和fc层
usr_emb = Embedding(num_embeddings=USR_ID_NUM, embedding_dim=32, sparse=False)
usr_fc = Linear(in_features=32, out_features=32)

usr_id_var = paddle.to_tensor(usr_id_data)
usr_id_feat = usr_fc(usr_emb(usr_id_var))

usr_id_feat = F.relu(usr_id_feat)

# 自定义一个用户年龄数据
usr_age_data = np.array((1, 18)).reshape(-1).astype('int64')
# 年龄的最大ID是56,所以Embedding层size的第一个参数设置为56 + 1 = 57
USR_AGE_DICT_SIZE = 56 + 1

usr_age_emb = Embedding(num_embeddings=USR_AGE_DICT_SIZE, embedding_dim=16)
usr_age_fc = Linear(in_features=16, out_features=16)
Beispiel #8
0
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.nn import Linear, Embedding, Conv2D
import numpy as np
import paddle.nn.functional as F

# 自定义一个用户职业数据
usr_job_data = np.array((0, 20)).reshape(-1).astype('int64')
print("输入的用户职业是:", usr_job_data)

# 对用户职业信息做映射,并紧接着一个Linear层
# 用户职业的最大ID是20,所以Embedding层size的第一个参数设置为20 + 1 = 21
USR_JOB_DICT_SIZE = 20 + 1
usr_job_emb = Embedding(num_embeddings=USR_JOB_DICT_SIZE, embedding_dim=16)
usr_job_fc = Linear(in_features=16, out_features=16)

usr_job = paddle.to_tensor(usr_job_data)
usr_job_feat = usr_job_emb(usr_job)
usr_job_feat = usr_job_fc(usr_job_feat)
usr_job_feat = F.relu(usr_job_feat)

print("用户年龄特征的数据特征是:", usr_job_feat.numpy(), "\n其形状是:", usr_job_feat.shape)
print("\n职业 0 对应的特征是:", usr_job_feat.numpy()[0, :])
print("职业 20 对应的特征是:", usr_job_feat.numpy()[1, :])
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.nn import Linear, Embedding, Conv2D
import numpy as np
import paddle.nn.functional as F

# 自定义一个电影ID数据
mov_id_data = np.array((1, 2)).reshape(-1).astype('int64')
# 对电影ID信息做映射,并紧接着一个FC层
MOV_DICT_SIZE = 3952 + 1
mov_emb = Embedding(num_embeddings=MOV_DICT_SIZE, embedding_dim=32)
mov_fc = Linear(32, 32)

print("输入的电影ID是:", mov_id_data)
mov_id_data = paddle.to_tensor(mov_id_data)
mov_id_feat = mov_fc(mov_emb(mov_id_data))
mov_id_feat = F.relu(mov_id_feat)
print("计算的电影ID的特征是", mov_id_feat.numpy(), "\n其形状是:", mov_id_feat.shape)
print("\n电影ID为 {} 计算得到的特征是:{}".format(mov_id_data.numpy()[0],
                                      mov_id_feat.numpy()[0]))
print("电影ID为 {} 计算得到的特征是:{}".format(mov_id_data.numpy()[1],
                                    mov_id_feat.numpy()[1]))
Beispiel #10
0
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.nn import Linear, Embedding, Conv2D
import numpy as np
import paddle.nn.functional as F

# 自定义两个电影名称数据
mov_title_data = np.array(((1, 2, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
                           (2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                            0))).reshape(2, 1, 15).astype('int64')
# 对电影名称做映射,紧接着FC和pool层
MOV_TITLE_DICT_SIZE = 1000 + 1
mov_title_emb = Embedding(num_embeddings=MOV_TITLE_DICT_SIZE, embedding_dim=32)
mov_title_conv = Conv2D(in_channels=1,
                        out_channels=1,
                        kernel_size=(3, 1),
                        stride=(2, 1),
                        padding=0)
# 使用 3 * 3卷积层代替全连接层
mov_title_conv2 = Conv2D(in_channels=1,
                         out_channels=1,
                         kernel_size=(3, 1),
                         stride=1,
                         padding=0)

mov_title_data = paddle.to_tensor(mov_title_data)
print("电影名称数据的输入形状: ", mov_title_data.shape)
# 1. 通过Embedding映射电影名称数据;
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.nn import Linear, Embedding, Conv2D
import numpy as np
import paddle.nn.functional as F

# 自定义一个用户性别数据
usr_gender_data = np.array((0, 1)).reshape(-1).astype('int64')
print("输入的用户性别是:", usr_gender_data)

# 用户的性别用0, 1 表示
# 性别最大ID是1,所以Embedding层size的第一个参数设置为1 + 1 = 2
USR_ID_NUM = 2
# 对用户性别信息做映射,并紧接着一个FC层
USR_GENDER_DICT_SIZE = 2
usr_gender_emb = Embedding(num_embeddings=USR_GENDER_DICT_SIZE,
                           embedding_dim=16)

usr_gender_fc = Linear(in_features=16, out_features=16)

usr_gender_var = paddle.to_tensor(usr_gender_data)
usr_gender_feat = usr_gender_fc(usr_gender_emb(usr_gender_var))
usr_gender_feat = F.relu(usr_gender_feat)
print("用户性别特征的数据特征是:", usr_gender_feat.numpy(), "\n其形状是:",
      usr_gender_feat.shape)
print("\n性别 0 对应的特征是:", usr_gender_feat.numpy()[0, :])
print("性别 1 对应的特征是:", usr_gender_feat.numpy()[1, :])
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.nn import Linear, Embedding, Conv2D
import numpy as np
import paddle.nn.functional as F

# 声明用户的最大ID,在此基础上加1(算上数字0)
USR_ID_NUM = 6040 + 1
# 声明Embedding 层,将ID映射为32长度的向量
usr_emb = Embedding(num_embeddings=USR_ID_NUM, embedding_dim=32, sparse=False)
# 声明输入数据,将其转成tensor
arr_1 = np.array([1], dtype="int64").reshape((-1))
print(arr_1)
arr_pd1 = paddle.to_tensor(arr_1)
print(arr_pd1)
# 计算结果
emb_res = usr_emb(arr_pd1)
# 打印结果
print("数字 1 的embedding结果是: ", emb_res.numpy(), "\n形状是:", emb_res.shape)

# 声明用户的最大ID,在此基础上加1(算上数字0)
USR_ID_NUM = 10
# 声明Embedding 层,将ID映射为16长度的向量
usr_emb = Embedding(num_embeddings=USR_ID_NUM, embedding_dim=16, sparse=False)
# 定义输入数据,输入数据为不超过10的整数,将其转成tensor