Beispiel #1
0
                save_checkpoint(epoch, model, optimizer, prefix)

                val_acc, val_preci, val_recall, mAP_scores = evaluate(
                    epoch, val_loader, model, bce_loss, log_writer)
                avg_map = np.mean(mAP_scores)

                if avg_map > best_mAP:
                    logger.info('mAP improved from {} to {}'.format(
                        best_mAP, avg_map))
                    best_mAP = avg_map
                    if last_model is not None:
                        os.remove(last_model)

                    fn = os.path.join(
                        c['model_dir'],
                        '{}_epoch{}_mAP{:.3}_preci{:.3}_recall{:.3}.pdparams'.
                        format(prefix, epoch, avg_map, val_preci, val_recall))
                    paddle.save(model.state_dict(), fn)
                    last_model = fn
                else:
                    logger.info(
                        f'mAP {avg_map} did not improved from {best_mAP}')

            if step % c['lr_dec_per_step'] == 0 and step != 0:
                if optimizer.get_lr() <= 3e-6:
                    factor = 0.95
                else:
                    factor = 0.1
                optimizer.set_lr(optimizer.get_lr() * factor)
                logger.info('decreased lr to {}'.format(optimizer.get_lr()))
Beispiel #2
0
    else:
        best_mAP = 0.0

    step = 0
    for epoch in range(start_epoch, epoch_num):

        avg_loss = 0.0
        avg_preci = 0.0
        avg_recall = 0.0

        model.train()
        model.clear_gradients()
        t0 = time.time()
        for batch_id, (x, y) in enumerate(train_loader()):
            if step < warm_steps:
                optimizer.set_lr(lrs[step])
            x.stop_gradient = False
            if c['balanced_sampling']:
                x = x.squeeze()
                y = y.squeeze()
            x = x.unsqueeze((1))
            if c['mixup']:
                mixed_x, mixed_y = mixup_data(x, y, c['mixup_alpha'])
                logits = model(mixed_x)
                loss_val = loss_fn(logits, mixed_y)
                loss_val.backward()
            else:
                logits = model(x)
                loss_val = bce_loss(logits, y)
                loss_val.backward()
            optimizer.step()
Beispiel #3
0
                p.stop_gradient = True
            if not isinstance(p, nn.BatchNorm1D):
                p.stop_gradient = True

    for epoch in range(start_epoch, epoch_num):

        avg_loss = 0.0
        avg_acc = 0.0
        model.train()
        model.clear_gradients()
        t0 = time.time()
        if config['max_lr'] > config['base_lr']:
            lr = get_lr(epoch - start_epoch, config['base_lr'],
                        config['max_lr'], config['half_cycle'],
                        config['reverse_lr'])
            optimizer.set_lr(lr)
            logger.info(f'Setting lr to {lr}')

        for batch_id, (x, y) in enumerate(train_loader()):

            x_mel = transforms(x)
            logits = model(x_mel)
            loss, pred = loss_fn(logits, y)
            loss.backward()
            optimizer.step()
            model.clear_gradients()

            acc = np.mean(np.argmax(pred.numpy(), axis=1) == y.numpy())
            if batch_id < 100:
                avg_acc = acc
                avg_loss = loss.numpy()[0]