def test_api_with_dygraph(self): with fluid.dygraph.guard(): data = np.random.random([1, 9, 9, 4]).astype('float32') x = fluid.dygraph.to_variable(data) tril_out, triu_out = tensor.tril(x).numpy(), tensor.triu(x).numpy() self.assertTrue(np.allclose(tril_out, np.tril(data))) self.assertTrue(np.allclose(triu_out, np.triu(data)))
def test_api_with_dygraph(self): paddle.disable_static() dtypes = ['float16', 'float32'] for dtype in dtypes: with fluid.dygraph.guard(): data = np.random.random([1, 9, 9, 4]).astype(dtype) x = fluid.dygraph.to_variable(data) tril_out, triu_out = tensor.tril(x).numpy(), tensor.triu( x).numpy() self.assertTrue(np.allclose(tril_out, np.tril(data))) self.assertTrue(np.allclose(triu_out, np.triu(data)))
def test_api(self): data = np.random.random([1, 9, 9, 4]).astype('float32') x = fluid.data(shape=[1, 9, -1, 4], dtype='float32', name='x') tril_out, triu_out = tensor.tril(x), tensor.triu(x) place = fluid.CUDAPlace( 0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() exe = fluid.Executor(place) tril_out, triu_out = exe.run( fluid.default_main_program(), feed={"x": data}, fetch_list=[tril_out, triu_out], ) self.assertTrue(np.allclose(tril_out, np.tril(data))) self.assertTrue(np.allclose(triu_out, np.triu(data)))
def test_api(self): paddle.enable_static() dtypes = ['float16', 'float32'] for dtype in dtypes: prog = Program() startup_prog = Program() with program_guard(prog, startup_prog): data = np.random.random([1, 9, 9, 4]).astype(dtype) x = fluid.data(shape=[1, 9, -1, 4], dtype=dtype, name='x') tril_out, triu_out = tensor.tril(x), tensor.triu(x) place = fluid.NPUPlace(0) exe = fluid.Executor(place) tril_out, triu_out = exe.run( fluid.default_main_program(), feed={"x": data}, fetch_list=[tril_out, triu_out], ) self.assertTrue(np.allclose(tril_out, np.tril(data))) self.assertTrue(np.allclose(triu_out, np.triu(data)))