Beispiel #1
0
            def test():
                data = conf_helps.data_layer(name="word", size=dict_dim)
                label = conf_helps.data_layer(name="label", size=label_dim)
                emb = conf_helps.embedding_layer(input=data, size=word_dim)
                boot_layer = conf_helps.data_layer(name="boot", size=10)
                boot_layer = conf_helps.fc_layer(name='boot_fc',
                                                 input=boot_layer,
                                                 size=10)

                def step(y, wid):
                    z = conf_helps.embedding_layer(input=wid, size=word_dim)
                    mem = conf_helps.memory(name="rnn_state",
                                            size=hidden_dim,
                                            boot_layer=boot_layer)
                    out = conf_helps.fc_layer(input=[y, z, mem],
                                              size=hidden_dim,
                                              act=conf_helps.TanhActivation(),
                                              bias_attr=True,
                                              name="rnn_state")
                    return out

                out = conf_helps.recurrent_group(name="rnn",
                                                 step=step,
                                                 input=[emb, data])

                rep = conf_helps.last_seq(input=out)
                prob = conf_helps.fc_layer(size=label_dim,
                                           input=rep,
                                           act=conf_helps.SoftmaxActivation(),
                                           bias_attr=True)

                conf_helps.outputs(
                    conf_helps.classification_cost(input=prob, label=label))
Beispiel #2
0
 def test_get_layer(self):
     pixel = layer.data(name='pixel2', type=data_type.dense_vector(784))
     label = layer.data(name='label2', type=data_type.integer_value(10))
     hidden = layer.fc(input=pixel,
                       size=100,
                       act=conf_helps.SigmoidActivation())
     inference = layer.fc(input=hidden,
                          size=10,
                          act=conf_helps.SoftmaxActivation())
     cost = layer.classification_cost(input=inference, label=label)
     topo = topology.Topology(cost)
     pixel_layer = topo.get_layer("pixel2")
     label_layer = topo.get_layer("label2")
     self.assertEqual(pixel_layer, pixel)
     self.assertEqual(label_layer, label)
Beispiel #3
0
    def test_parse(self):
        pixel = layer.data(name='pixel3', type=data_type.dense_vector(784))
        label = layer.data(name='label3', type=data_type.integer_value(10))
        hidden = layer.fc(input=pixel,
                          size=100,
                          act=conf_helps.SigmoidActivation())
        inference = layer.fc(input=hidden,
                             size=10,
                             act=conf_helps.SoftmaxActivation())
        maxid = layer.max_id(input=inference)
        cost1 = layer.classification_cost(input=inference, label=label)
        cost2 = layer.cross_entropy_cost(input=inference, label=label)

        topology.Topology(cost2).proto()
        topology.Topology([cost1]).proto()
        topology.Topology([cost1, cost2]).proto()
        topology.Topology([inference, maxid]).proto()
Beispiel #4
0
    def test_data_type(self):
        pixel = layer.data(name='pixel', type=data_type.dense_vector(784))
        label = layer.data(name='label', type=data_type.integer_value(10))
        hidden = layer.fc(input=pixel,
                          size=100,
                          act=conf_helps.SigmoidActivation())
        inference = layer.fc(input=hidden,
                             size=10,
                             act=conf_helps.SoftmaxActivation())
        cost = layer.classification_cost(input=inference, label=label)
        topo = topology.Topology(cost)
        data_types = topo.data_type()
        self.assertEqual(len(data_types), 2)
        pixel_data_type = filter(lambda type: type[0] == "pixel", data_types)
        self.assertEqual(len(pixel_data_type), 1)
        pixel_data_type = pixel_data_type[0]
        self.assertEqual(pixel_data_type[1].type, pydp2.DataType.Dense)
        self.assertEqual(pixel_data_type[1].dim, 784)

        label_data_type = filter(lambda type: type[0] == "label", data_types)
        self.assertEqual(len(label_data_type), 1)
        label_data_type = label_data_type[0]
        self.assertEqual(label_data_type[1].type, pydp2.DataType.Index)
        self.assertEqual(label_data_type[1].dim, 10)
Beispiel #5
0
    return V2LayerImpl


data = __convert_to_v2__('data_layer', None, [])
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
max_id = __convert_to_v2__('maxid_layer',
                           name_prefix='maxid_layer',
                           parent_names=['input'])
classification_cost = __convert_to_v2__('classification_cost',
                                        name_prefix='classification_cost',
                                        parent_names=['input', 'label'])
cross_entropy_cost = __convert_to_v2__('cross_entropy',
                                       name_prefix='cross_entropy',
                                       parent_names=['input', 'label'])

if __name__ == '__main__':
    pixel = data(name='pixel', size=784)
    label = data(name='label', size=10)
    hidden = fc(input=pixel, size=100, act=conf_helps.SigmoidActivation())
    inference = fc(input=hidden, size=10, act=conf_helps.SoftmaxActivation())
    maxid = max_id(input=inference)
    cost1 = classification_cost(input=inference, label=label)
    cost2 = cross_entropy_cost(input=inference, label=label)

    print parse_network(cost1)
    print parse_network(cost2)
    print parse_network(cost1, cost2)
    print parse_network(cost2)
    print parse_network(inference, maxid)
Beispiel #6
0
                               padding=1,
                               stride=1,
                               num_channels=1,
                               num_filters=6,
                               filter_size=5,
                               act=paddle.LinearActivation())

pool_1 = paddle.img_pool_layer(input=conv_1,
                               stride=2,
                               pool_size=2,
                               pool_type=paddle.MaxPooling())

conv_2 = paddle.img_conv_layer(input=pool_1,
                               stride=1,
                               num_filters=16,
                               filter_size=5,
                               act=paddle.LinearActivation())
pool_2 = paddle.img_pool_layer(input=conv_2,
                               stride=2,
                               pool_size=2,
                               pool_type=paddle.MaxPooling())

fc_1 = paddle.fc_layer(input=pool_2, size=500, act=paddle.SigmoidActivation())
fc_2 = paddle.fc_layer(input=fc_1, size=10, act=paddle.SoftmaxActivation())

label = paddle.data_layer(name='label', size=10)

cost = paddle.classification_cost(input=fc_2, label=label)

paddle.outputs(cost)