def create_rnn_op(self):
        x = layers.data(shape=[self.sent_len, self.batch_size, self.input_dim],
                        dtype='float32',
                        name='x',
                        append_batch_size=False,
                        **self.p_info)
        x.stop_gradient = False
        h_boot = layers.data(shape=[self.input_dim],
                             dtype='float32',
                             name='h_boot',
                             **self.p_info)
        h_boot.stop_gradient = False

        rnn = layers.StaticRNN(main_program=self.main_program)
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

            h = layers.scale(x=layers.elementwise_add(x=h_pre,
                                                      y=x_t,
                                                      **self.p_info),
                             scale=self.py_rnn.scale,
                             **self.p_info)

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()
    def test_grad(self):
        place = core.CPUPlace()
        program = Program()

        x = layers.data(
            name='x',
            shape=[1],
            dtype='float32',
            main_program=program,
            stop_gradient=False)
        y = layers.data(
            name='y',
            shape=[1],
            dtype='bool',
            main_program=program,
            stop_gradient=False)

        level = 0

        out_true, out_false = layers.split_lod_tensor(
            input=x, mask=y, level=level, main_program=program)
        out = layers.merge_lod_tensor(
            in_true=out_true,
            in_false=out_false,
            mask=y,
            x=x,
            level=level,
            main_program=program)
        mean = layers.mean(x=out, main_program=program)

        append_backward_ops(mean)

        tensor = core.LoDTensor()
        tensor.set(np.arange(10).reshape(10, 1).astype('float32'), place)
        tensor.set_lod([[0, 3, 9, 10]])

        mask_np = np.array([0, 1, 0]).astype('bool')
        mask_np = np.expand_dims(mask_np, axis=1)

        mask = core.LoDTensor()
        mask.set(mask_np, place)

        exe = Executor(place)
        scope = core.Scope()

        g_vars = program.global_block().var(x.name + "@GRAD")
        g_out = [
            item.sum()
            for item in map(np.array,
                            exe.run(program,
                                    feed={'x': tensor,
                                          'y': mask},
                                    fetch_list=[g_vars],
                                    scope=scope,
                                    return_numpy=False))
        ]

        g_out_sum = np.array(g_out).sum()

        self.assertAlmostEqual(1.0, g_out_sum, delta=0.1)
Beispiel #3
0
    def create_rnn_op(self):
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
            name='x',
            append_batch_size=False,
            **self.p_info)
        x.stop_gradient = False
        h_boot = layers.data(
            shape=[self.input_dim],
            dtype='float32',
            name='h_boot',
            **self.p_info)
        h_boot.stop_gradient = False

        rnn = layers.StaticRNN(main_program=self.main_program)
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

            h = layers.scale(
                x=layers.elementwise_add(
                    x=h_pre, y=x_t, **self.p_info),
                scale=self.py_rnn.scale,
                **self.p_info)

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()
    def create_rnn_op(self):
        x = layers.data(shape=[self.sent_len, self.batch_size, self.input_dim],
                        dtype='float32',
                        name='x',
                        append_batch_size=False,
                        **self.p_info)
        x.stop_gradient = False
        h_boot1 = layers.data(shape=[self.batch_size, self.input_dim],
                              dtype='float32',
                              name='h_boot1',
                              append_batch_size=False,
                              **self.p_info)
        h_boot1.stop_gradient = False
        h_boot2 = layers.data(shape=[self.batch_size, self.input_dim],
                              dtype='float32',
                              name='h_boot2',
                              append_batch_size=False,
                              **self.p_info)
        h_boot2.stop_gradient = False

        rnn = layers.StaticRNN(main_program=self.main_program)
        with rnn.step():
            h_pre1 = rnn.memory(init=h_boot1)
            h_pre2 = rnn.memory(init=h_boot2)
            x_t = rnn.step_input(x)

            mem1 = layers.scale(x=h_pre1, scale=1.0, **self.p_info)
            mem2 = layers.scale(x=h_pre2, scale=1.0, **self.p_info)
            out = layers.sums(input=[mem1, x_t, mem2], **self.p_info)

            rnn.update_memory(h_pre1, mem1)
            rnn.update_memory(h_pre2, mem2)
            rnn.output(out)

        return rnn()
Beispiel #5
0
    def test_recognize_digits_conv(self):
        program = Program()
        with program_guard(program, startup_program=Program()):
            images = layers.data(name='pixel',
                                 shape=[1, 28, 28],
                                 dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            conv_pool_1 = nets.simple_img_conv_pool(input=images,
                                                    filter_size=5,
                                                    num_filters=2,
                                                    pool_size=2,
                                                    pool_stride=2,
                                                    act="relu")
            conv_pool_2 = nets.simple_img_conv_pool(input=conv_pool_1,
                                                    filter_size=5,
                                                    num_filters=4,
                                                    pool_size=2,
                                                    pool_stride=2,
                                                    act="relu")

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
            avg_cost = layers.mean(x=cost)

            program.append_backward(avg_cost)

        print(str(program))
Beispiel #6
0
    def test_recognize_digits_conv(self):
        program = Program()
        with program_guard(program, startup_program=Program()):
            images = layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu")
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu")

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
            avg_cost = layers.mean(x=cost)

            program.append_backward(avg_cost)

        print(str(program))
Beispiel #7
0
 def test_sigmoid_cross_entropy(self):
     program = Program()
     with program_guard(program):
         dat = layers.data(name='data', shape=[10], dtype='float32')
         lbl = layers.data(name='label', shape=[10], dtype='float32')
         self.assertIsNotNone(
             layers.sigmoid_cross_entropy_with_logits(x=dat, label=lbl))
     print(str(program))
    def test_ifelse(self):
        kwargs = {'startup_program': Program(), 'main_program': Program()}
        image = layers.data(name='x', shape=[784], dtype='float32', **kwargs)

        label = layers.data(name='y', shape=[1], dtype='int64', **kwargs)

        limit = layers.fill_constant_batch_size_like(
            input=label, dtype='int64', shape=[1], value=5.0, **kwargs)

        cond = layers.less_than(x=label, y=limit, **kwargs)

        ie = layers.IfElse(cond, **kwargs)

        with ie.true_block():
            true_image = ie.input(image)
            hidden = layers.fc(input=true_image, size=100, act='tanh', **kwargs)
            prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs)
            ie.output(prob)

        with ie.false_block():
            false_image = ie.input(image)
            hidden = layers.fc(input=false_image,
                               size=200,
                               act='tanh',
                               **kwargs)
            prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs)
            ie.output(prob)

        prob = ie()
        loss = layers.cross_entropy(input=prob[0], label=label, **kwargs)
        avg_loss = layers.mean(x=loss, **kwargs)

        optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
        optimizer.minimize(avg_loss, kwargs['startup_program'])
        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=8192),
            batch_size=200)

        place = core.CPUPlace()
        exe = Executor(place)

        exe.run(kwargs['startup_program'])
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for data in train_reader():
                x_data = np.array(map(lambda x: x[0], data)).astype("float32")
                y_data = np.array(map(lambda x: x[1], data)).astype("int64")
                y_data = y_data.reshape((y_data.shape[0], 1))

                outs = exe.run(kwargs['main_program'],
                               feed={'x': x_data,
                                     'y': y_data},
                               fetch_list=[avg_loss])
                print outs[0]
                if outs[0] < 1.0:
                    return
        self.assertFalse(True)
Beispiel #9
0
 def test_sigmoid_cross_entropy(self):
     program = Program()
     with program_guard(program):
         dat = layers.data(name='data', shape=[10], dtype='float32')
         lbl = layers.data(name='label', shape=[10], dtype='float32')
         self.assertIsNotNone(
             layers.sigmoid_cross_entropy_with_logits(
                 x=dat, label=lbl))
     print(str(program))
def get_usr_combined_features():
    # FIXME(dzh) : old API integer_value(10) may has range check.
    # currently we don't have user configurated check.

    USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1

    uid = layers.data(name='user_id', shape=[1], dtype='int64')

    usr_emb = layers.embedding(
        input=uid,
        dtype='float32',
        size=[USR_DICT_SIZE, 32],
        param_attr='user_table',
        is_sparse=IS_SPARSE)

    usr_fc = layers.fc(input=usr_emb, size=32)

    USR_GENDER_DICT_SIZE = 2

    usr_gender_id = layers.data(name='gender_id', shape=[1], dtype='int64')

    usr_gender_emb = layers.embedding(
        input=usr_gender_id,
        size=[USR_GENDER_DICT_SIZE, 16],
        param_attr='gender_table',
        is_sparse=IS_SPARSE)

    usr_gender_fc = layers.fc(input=usr_gender_emb, size=16)

    USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table)
    usr_age_id = layers.data(name='age_id', shape=[1], dtype="int64")

    usr_age_emb = layers.embedding(
        input=usr_age_id,
        size=[USR_AGE_DICT_SIZE, 16],
        is_sparse=IS_SPARSE,
        param_attr='age_table')

    usr_age_fc = layers.fc(input=usr_age_emb, size=16)

    USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1
    usr_job_id = layers.data(name='job_id', shape=[1], dtype="int64")

    usr_job_emb = layers.embedding(
        input=usr_job_id,
        size=[USR_JOB_DICT_SIZE, 16],
        param_attr='job_table',
        is_sparse=IS_SPARSE)

    usr_job_fc = layers.fc(input=usr_job_emb, size=16)

    concat_embed = layers.concat(
        input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], axis=1)

    usr_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")

    return usr_combined_features
Beispiel #11
0
def get_mov_combined_features():

    MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1

    mov_id = layers.data(name='movie_id', shape=[1], dtype='int64')

    mov_emb = layers.embedding(input=mov_id,
                               dtype='float32',
                               size=[MOV_DICT_SIZE, 32],
                               param_attr=smart_attr(MOV_DICT_SIZE,
                                                     name='movie_table'),
                               is_sparse=IS_SPARSE)

    mov_fc = layers.fc(input=mov_emb, size=32, param_attr=smart_attr(32))

    CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories())

    # category_id = layers.data(name='category_id', shape=[1], dtype='int64')

    # mov_categories_emb = layers.embedding(
    #     input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE,
    #     param_attr=smart_attr(CATEGORY_DICT_SIZE))

    # mov_categories_hidden = layers.sequence_pool(
    #     input=mov_categories_emb, pool_type="sum")

    MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict())

    mov_title_id = layers.data(name='movie_title', shape=[1], dtype='int64')

    mov_title_emb = layers.embedding(
        input=mov_title_id,
        size=[MOV_TITLE_DICT_SIZE, 32],
        is_sparse=IS_SPARSE,
        param_attr=smart_attr(MOV_TITLE_DICT_SIZE))

    mov_title_conv = nets.sequence_conv_pool(input=mov_title_emb,
                                             num_filters=32,
                                             filter_size=3,
                                             act="tanh",
                                             pool_type="sum")

    concat_embed = layers.concat(
        # input=[mov_fc, mov_categories_hidden, mov_title_conv], axis=1)
        input=[mov_fc, mov_title_conv],
        axis=1)

    # FIXME(dzh) : need tanh operator
    mov_combined_features = layers.fc(input=concat_embed,
                                      size=200,
                                      act="tanh",
                                      param_attr=smart_attr(200))

    return mov_combined_features
def get_usr_combined_features():
    # FIXME(dzh) : old API integer_value(10) may has range check.
    # currently we don't have user configurated check.

    USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1

    uid = layers.data(name='user_id', shape=[1], dtype='int64')

    usr_emb = layers.embedding(input=uid,
                               dtype='float32',
                               size=[USR_DICT_SIZE, 32],
                               param_attr='user_table',
                               is_sparse=IS_SPARSE)

    usr_fc = layers.fc(input=usr_emb, size=32)

    USR_GENDER_DICT_SIZE = 2

    usr_gender_id = layers.data(name='gender_id', shape=[1], dtype='int64')

    usr_gender_emb = layers.embedding(input=usr_gender_id,
                                      size=[USR_GENDER_DICT_SIZE, 16],
                                      param_attr='gender_table',
                                      is_sparse=IS_SPARSE)

    usr_gender_fc = layers.fc(input=usr_gender_emb, size=16)

    USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table)
    usr_age_id = layers.data(name='age_id', shape=[1], dtype="int64")

    usr_age_emb = layers.embedding(input=usr_age_id,
                                   size=[USR_AGE_DICT_SIZE, 16],
                                   is_sparse=IS_SPARSE,
                                   param_attr='age_table')

    usr_age_fc = layers.fc(input=usr_age_emb, size=16)

    USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1
    usr_job_id = layers.data(name='job_id', shape=[1], dtype="int64")

    usr_job_emb = layers.embedding(input=usr_job_id,
                                   size=[USR_JOB_DICT_SIZE, 16],
                                   param_attr='job_table',
                                   is_sparse=IS_SPARSE)

    usr_job_fc = layers.fc(input=usr_job_emb, size=16)

    concat_embed = layers.concat(
        input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], axis=1)

    usr_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")

    return usr_combined_features
Beispiel #13
0
    def test_fit_a_line(self):
        program = Program()
        with program_guard(program, startup_program=Program()):
            x = layers.data(name='x', shape=[13], dtype='float32')
            y_predict = layers.fc(input=x, size=1, act=None)
            y = layers.data(name='y', shape=[1], dtype='float32')
            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(x=cost)
            self.assertIsNotNone(avg_cost)
            program.append_backward(avg_cost)

        print(str(program))
Beispiel #14
0
    def test_fit_a_line(self):
        program = Program()
        with program_guard(program, startup_program=Program()):
            x = layers.data(name='x', shape=[13], dtype='float32')
            y_predict = layers.fc(input=x, size=1, act=None)
            y = layers.data(name='y', shape=[1], dtype='float32')
            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(x=cost)
            self.assertIsNotNone(avg_cost)
            program.append_backward(avg_cost)

        print(str(program))
Beispiel #15
0
    def test_simple_forward(self):
        d0 = layers.data(
            "d0", shape=[10], append_batch_size=False, dtype='float32')
        d1 = layers.data(
            "d1", shape=[10], append_batch_size=False, dtype='float32')
        d2 = layers.data(
            "d2", shape=[10], append_batch_size=False, dtype='float32')
        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = True
        init = layers.zeros(shape=[10], dtype='float32')
        mem_array = layers.array_write(x=init, i=i)
        data_array = layers.array_write(x=d0, i=i)

        i = layers.increment(i)
        layers.array_write(d1, i, array=data_array)

        i = layers.increment(i)
        layers.array_write(d2, i, array=data_array)

        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = True

        array_len = layers.fill_constant(shape=[1], dtype='int64', value=3)
        array_len.stop_gradient = True
        cond = layers.less_than(x=i, y=array_len)

        while_op = layers.While(cond=cond)
        with while_op.block():
            d = layers.array_read(array=data_array, i=i)
            prev = layers.array_read(array=mem_array, i=i)
            result = layers.sums(input=[d, prev])

            i = layers.increment(x=i, in_place=True)
            layers.array_write(result, i=i, array=mem_array)
            layers.less_than(x=i, y=array_len, cond=cond)

        sum_result = layers.array_read(array=mem_array, i=i)
        loss = layers.mean(x=sum_result)

        append_backward_ops(loss)

        cpu = core.CPUPlace()
        exe = Executor(cpu)
        d = []

        for i in xrange(3):
            d.append(numpy.random.random(size=[10]).astype('float32'))

        outs = exe.run(feed={'d0': d[0],
                             'd1': d[1],
                             'd2': d[2]},
                       fetch_list=[sum_result])
        self.assertAlmostEqual(numpy.sum(d), numpy.sum(outs[0]), delta=0.01)
Beispiel #16
0
    def test_recognize_digits_mlp(self):
        program = Program()
        with program_guard(program, startup_program=Program()):
            # Change g_program, so the rest layers use `g_program`
            images = layers.data(name='pixel', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
            predict = layers.fc(input=hidden2, size=10, act='softmax')
            cost = layers.cross_entropy(input=predict, label=label)
            avg_cost = layers.mean(x=cost)
            self.assertIsNotNone(avg_cost)

        print(str(program))
    def main(self,
             tensor,
             mask,
             expect_true,
             expect_false,
             expect_out,
             level=0):
        place = self.place()
        program = Program()
        x = layers.data(name='x', shape=[1], main_program=program)
        x.persistable = True

        y = layers.data(name='y', shape=[1], main_program=program)
        y.persistable = True

        out_true, out_false = layers.split_lod_tensor(input=x,
                                                      mask=y,
                                                      level=level,
                                                      main_program=program)
        out_true.persistable = True
        out_false.persistable = True

        out = layers.merge_lod_tensor(in_true=out_true,
                                      in_false=out_false,
                                      mask=y,
                                      x=x,
                                      level=level,
                                      main_program=program)

        out.persistable = True

        exe = Executor(place)
        scope = core.Scope()
        exe.run(program,
                feed={
                    'x': tensor,
                    'y': mask
                },
                scope=scope,
                return_numpy=False)

        var_true = scope.find_var(out_true.name).get_tensor()

        var_false = scope.find_var(out_false.name).get_tensor()

        var_out = scope.find_var(out.name).get_tensor()

        self.check_tensor_same(var_true, expect_true)
        self.check_tensor_same(var_false, expect_false)
        self.check_tensor_same(var_out, expect_out)
Beispiel #18
0
    def test_recognize_digits_mlp(self):
        program = Program()
        with program_guard(program, startup_program=Program()):
            # Change g_program, so the rest layers use `g_program`
            images = layers.data(name='pixel', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
            predict = layers.fc(input=hidden2, size=10, act='softmax')
            cost = layers.cross_entropy(input=predict, label=label)
            avg_cost = layers.mean(x=cost)
            self.assertIsNotNone(avg_cost)

        print(str(program))
Beispiel #19
0
    def main(self, tensor, expect_array, expect_lod, expect_max_len, level=0):
        place = self.place()
        program = Program()
        x = layers.data(name='x', shape=[10], main_program=program)
        x.persistable = True
        table = layers.lod_rank_table(x, level=level, main_program=program)
        max_len = layers.max_sequence_len(table, main_program=program)
        max_len.persistable = True
        array = layers.lod_tensor_to_array(x, table, main_program=program)
        array.persistable = True

        result = layers.array_to_lod_tensor(array, table, main_program=program)
        result.persistable = True
        exe = Executor(place)
        scope = core.Scope()
        exe.run(program, feed={'x': tensor}, scope=scope)
        var = scope.find_var(array.name)
        array = var.get_lod_tensor_array()
        if expect_array is not None and expect_lod is not None:
            self.check_array_same(array, expect_array, expect_lod)
        self.check_tensor_same(
            scope.find_var(result.name).get_tensor(), tensor)

        self.assertEqual(
            numpy.array(scope.find_var(max_len.name).get_tensor())[0],
            expect_max_len)
    def main(self, tensor, expect_array, expect_lod, expect_max_len, level=0):
        place = self.place()
        program = Program()
        x = layers.data(name='x', shape=[10], main_program=program)
        x.persistable = True
        table = layers.lod_rank_table(x, level=level, main_program=program)
        max_len = layers.max_sequence_len(table, main_program=program)
        max_len.persistable = True
        array = layers.lod_tensor_to_array(x, table, main_program=program)
        array.persistable = True

        result = layers.array_to_lod_tensor(array, table, main_program=program)
        result.persistable = True
        exe = Executor(place)
        scope = core.Scope()
        exe.run(program, feed={'x': tensor}, scope=scope)
        var = scope.find_var(array.name)
        array = var.get_lod_tensor_array()
        if expect_array is not None and expect_lod is not None:
            self.check_array_same(array, expect_array, expect_lod)
        self.check_tensor_same(scope.find_var(result.name).get_tensor(), tensor)

        self.assertEqual(
            numpy.array(scope.find_var(max_len.name).get_tensor())[0],
            expect_max_len)
Beispiel #21
0
    def test_simple_conv2d(self):
        program = Program()
        with program_guard(program, startup_program=Program()):
            images = layers.data(name='pixel', shape=[3, 48, 48], dtype='int32')
            layers.conv2d(input=images, num_filters=3, filter_size=[4, 4])

        print(str(program))
    def test_grad(self):
        place = core.CPUPlace()
        program = Program()

        x = layers.data(
            name='x',
            shape=[1],
            dtype='float32',
            main_program=program,
            stop_gradient=False)
        table = layers.lod_rank_table(x, level=0, main_program=program)
        array = layers.lod_tensor_to_array(x, table, main_program=program)
        result = layers.array_to_lod_tensor(array, table, main_program=program)

        mean = layers.mean(x=result, main_program=program)

        append_backward_ops(mean)

        tensor = core.LoDTensor()
        tensor.set(numpy.arange(10).reshape(10, 1).astype('float32'), place)
        tensor.set_lod([[0, 3, 9, 10]])

        g_vars = program.global_block().var(x.name + "@GRAD")

        exe = Executor(place)
        g_out = [
            numpy.array(item).sum()
            for item in exe.run(program,
                                feed={'x': tensor},
                                fetch_list=[g_vars],
                                return_numpy=False)
        ]
        g_out_sum = numpy.array(g_out).sum()

        self.assertAlmostEqual(1.0, g_out_sum, delta=0.1)
Beispiel #23
0
    def test_grad(self):
        place = core.CPUPlace()
        program = Program()

        x = layers.data(name='x',
                        shape=[1],
                        dtype='float32',
                        main_program=program,
                        stop_gradient=False)
        table = layers.lod_rank_table(x, level=0, main_program=program)
        array = layers.lod_tensor_to_array(x, table, main_program=program)
        result = layers.array_to_lod_tensor(array, table, main_program=program)

        mean = layers.mean(x=result, main_program=program)

        append_backward_ops(mean)

        tensor = core.LoDTensor()
        tensor.set(numpy.arange(10).reshape(10, 1).astype('float32'), place)
        tensor.set_lod([[0, 3, 9, 10]])

        g_vars = program.global_block().var(x.name + "@GRAD")

        exe = Executor(place)
        g_out = [
            numpy.array(item).sum() for item in exe.run(program,
                                                        feed={'x': tensor},
                                                        fetch_list=[g_vars],
                                                        return_numpy=False)
        ]
        g_out_sum = numpy.array(g_out).sum()

        self.assertAlmostEqual(1.0, g_out_sum, delta=0.1)
    def test_forward(self):
        data = layers.data(name='X', shape=[1], dtype='float32')
        data.stop_gradient = False
        cond = layers.ConditionalBlock(inputs=[data])
        out = layers.create_tensor(dtype='float32')
        with cond.block():
            hidden = layers.fc(input=data, size=10)
            layers.assign(hidden, out)

        cpu = core.CPUPlace()
        exe = Executor(cpu)
        exe.run(default_startup_program())

        x = numpy.random.random(size=(10, 1)).astype('float32')

        outs = exe.run(feed={'X': x}, fetch_list=[out])[0]
        print outs
        loss = layers.mean(x=out)
        append_backward_ops(loss=loss)
        outs = exe.run(feed={'X': x},
                       fetch_list=[
                           default_main_program().block(0).var(data.name +
                                                               "@GRAD")
                       ])[0]
        print outs
    def test_forward(self):
        data = layers.data(name='X', shape=[1], dtype='float32')
        data.stop_gradient = False
        cond = layers.ConditionalBlock(inputs=[data])
        out = layers.create_tensor(dtype='float32')
        with cond.block():
            hidden = layers.fc(input=data, size=10)
            layers.assign(hidden, out)

        cpu = core.CPUPlace()
        exe = Executor(cpu)
        exe.run(default_startup_program())

        x = numpy.random.random(size=(10, 1)).astype('float32')

        outs = exe.run(feed={'X': x}, fetch_list=[out])[0]
        print outs
        loss = layers.mean(x=out)
        append_backward_ops(loss=loss)
        outs = exe.run(
            feed={'X': x},
            fetch_list=[
                default_main_program().block(0).var(data.name + "@GRAD")
            ])[0]
        print outs
 def test_mul(self):
     a = data(name='a', shape=[784], dtype='float32')
     b = data(
         name='b',
         shape=[784, 100],
         dtype='float32',
         append_batch_size=False)
     out = mul(x=a, y=b)
     place = core.CPUPlace()
     a_np = numpy.random.random((100, 784)).astype('float32')
     b_np = numpy.random.random((784, 100)).astype('float32')
     exe = Executor(place)
     outs = exe.run(feed={'a': a_np, 'b': b_np}, fetch_list=[out])
     out = outs[0]
     self.assertEqual((100, 100), out.shape)
     self.assertTrue(numpy.allclose(out, numpy.dot(a_np, b_np)))
    def test_shrink_rnn_memory(self):
        x = layers.data('x', shape=[100], dtype='float32')
        x.stop_gradient = False
        table = layers.lod_rank_table(x=x)
        i = layers.zeros(dtype='int64', shape=[1])
        mem1 = layers.shrink_memory(x=x, i=i, table=table)
        i = layers.increment(x=i)
        i.stop_gradient = True
        mem2 = layers.shrink_memory(x=mem1, i=i, table=table)
        i = layers.increment(x=i)
        i.stop_gradient = True
        mem3 = layers.shrink_memory(x=mem2, i=i, table=table)

        cpu = core.CPUPlace()
        tensor = core.LoDTensor()
        tensor.set_lod([[0, 2, 5, 6]])
        tensor_np = numpy.random.random(size=(3, 100)).astype('float32')
        tensor.set(tensor_np, cpu)
        exe = Executor(cpu)
        outs = exe.run(feed={'x': tensor}, fetch_list=[mem1, mem2, mem3])
        self.assertTrue(numpy.allclose(tensor_np[0:3], outs[0]))
        self.assertTrue(numpy.allclose(tensor_np[0:2], outs[1]))
        self.assertTrue(numpy.allclose(tensor_np[0:1], outs[2]))

        mem3_mean = layers.mean(x=mem3)
        append_backward_ops(loss=mem3_mean)
        x_grad = exe.run(
            feed={'x': tensor},
            fetch_list=[main_program.global_block().var('x@GRAD')])[0]
        self.assertAlmostEqual(1.0, x_grad.sum(), delta=0.1)
Beispiel #28
0
    def test_word_embedding(self):
        program = Program()
        with program_guard(program, startup_program=Program()):
            dict_size = 10000
            embed_size = 32
            first_word = layers.data(name='firstw', shape=[1], dtype='int64')
            second_word = layers.data(name='secondw', shape=[1], dtype='int64')
            third_word = layers.data(name='thirdw', shape=[1], dtype='int64')
            forth_word = layers.data(name='forthw', shape=[1], dtype='int64')
            next_word = layers.data(name='nextw', shape=[1], dtype='int64')

            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
                axis=1)

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
            predict_word = layers.fc(input=hidden1,
                                     size=dict_size,
                                     act='softmax')
            cost = layers.cross_entropy(input=predict_word, label=next_word)
            avg_cost = layers.mean(x=cost)
            self.assertIsNotNone(avg_cost)

        print(str(program))
def get_mov_combined_features():

    MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1

    mov_id = layers.data(name='movie_id', shape=[1], dtype='int64')

    mov_emb = layers.embedding(
        input=mov_id,
        dtype='float32',
        size=[MOV_DICT_SIZE, 32],
        param_attr='movie_table',
        is_sparse=IS_SPARSE)

    mov_fc = layers.fc(input=mov_emb, size=32)

    CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories())

    category_id = layers.data(name='category_id', shape=[1], dtype='int64')

    mov_categories_emb = layers.embedding(
        input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE)

    mov_categories_hidden = layers.sequence_pool(
        input=mov_categories_emb, pool_type="sum")

    MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict())

    mov_title_id = layers.data(name='movie_title', shape=[1], dtype='int64')

    mov_title_emb = layers.embedding(
        input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE)

    mov_title_conv = nets.sequence_conv_pool(
        input=mov_title_emb,
        num_filters=32,
        filter_size=3,
        act="tanh",
        pool_type="sum")

    concat_embed = layers.concat(
        input=[mov_fc, mov_categories_hidden, mov_title_conv], axis=1)

    # FIXME(dzh) : need tanh operator
    mov_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")

    return mov_combined_features
Beispiel #30
0
    def test_simple_conv2d(self):
        program = Program()
        with program_guard(program, startup_program=Program()):
            images = layers.data(name='pixel',
                                 shape=[3, 48, 48],
                                 dtype='int32')
            layers.conv2d(input=images, num_filters=3, filter_size=[4, 4])

        print(str(program))
    def main(self, tensor, mask, expect_true, expect_false, expect_out,
             level=0):
        place = self.place()
        program = Program()
        x = layers.data(name='x', shape=[1], main_program=program)
        x.persistable = True

        y = layers.data(name='y', shape=[1], main_program=program)
        y.persistable = True

        out_true, out_false = layers.split_lod_tensor(
            input=x, mask=y, level=level, main_program=program)
        out_true.persistable = True
        out_false.persistable = True

        out = layers.merge_lod_tensor(
            in_true=out_true,
            in_false=out_false,
            mask=y,
            x=x,
            level=level,
            main_program=program)

        out.persistable = True

        exe = Executor(place)
        scope = core.Scope()
        exe.run(program,
                feed={'x': tensor,
                      'y': mask},
                scope=scope,
                return_numpy=False)

        var_true = scope.find_var(out_true.name).get_tensor()

        var_false = scope.find_var(out_false.name).get_tensor()

        var_out = scope.find_var(out.name).get_tensor()

        self.check_tensor_same(var_true, expect_true)
        self.check_tensor_same(var_false, expect_false)
        self.check_tensor_same(var_out, expect_out)
Beispiel #32
0
    def test_word_embedding(self):
        program = Program()
        with program_guard(program, startup_program=Program()):
            dict_size = 10000
            embed_size = 32
            first_word = layers.data(name='firstw', shape=[1], dtype='int64')
            second_word = layers.data(name='secondw', shape=[1], dtype='int64')
            third_word = layers.data(name='thirdw', shape=[1], dtype='int64')
            forth_word = layers.data(name='forthw', shape=[1], dtype='int64')
            next_word = layers.data(name='nextw', shape=[1], dtype='int64')

            embed_first = layers.embedding(input=first_word,
                                           size=[dict_size, embed_size],
                                           dtype='float32',
                                           param_attr='shared_w')
            embed_second = layers.embedding(input=second_word,
                                            size=[dict_size, embed_size],
                                            dtype='float32',
                                            param_attr='shared_w')

            embed_third = layers.embedding(input=third_word,
                                           size=[dict_size, embed_size],
                                           dtype='float32',
                                           param_attr='shared_w')
            embed_forth = layers.embedding(input=forth_word,
                                           size=[dict_size, embed_size],
                                           dtype='float32',
                                           param_attr='shared_w')

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
                axis=1)

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
            predict_word = layers.fc(input=hidden1,
                                     size=dict_size,
                                     act='softmax')
            cost = layers.cross_entropy(input=predict_word, label=next_word)
            avg_cost = layers.mean(x=cost)
            self.assertIsNotNone(avg_cost)

        print(str(program))
Beispiel #33
0
    def test_linear_chain_crf(self):
        program = Program()
        with program_guard(program, startup_program=Program()):
            label_dict_len = 10
            images = layers.data(name='pixel', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            hidden = layers.fc(input=images, size=128)
            crf = layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
            self.assertNotEqual(crf, None)
            self.assertNotEqual(crf_decode, None)

        print(str(program))
Beispiel #34
0
    def test_linear_chain_crf(self):
        program = Program()
        with program_guard(program, startup_program=Program()):
            label_dict_len = 10
            images = layers.data(name='pixel', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            hidden = layers.fc(input=images, size=128)
            crf = layers.linear_chain_crf(input=hidden,
                                          label=label,
                                          param_attr=ParamAttr(name="crfw"))
            crf_decode = layers.crf_decoding(input=hidden,
                                             param_attr=ParamAttr(name="crfw"))
            layers.chunk_eval(input=crf_decode,
                              label=label,
                              chunk_scheme="IOB",
                              num_chunk_types=(label_dict_len - 1) / 2)
            self.assertNotEqual(crf, None)
            self.assertNotEqual(crf_decode, None)

        print(str(program))
Beispiel #35
0
    def create_rnn_op(self):
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
            name='x',
            append_batch_size=False,
            **self.p_info)
        x.stop_gradient = False
        h_boot = layers.data(
            shape=[self.input_dim],
            dtype='float32',
            name='h_boot',
            **self.p_info)
        h_boot.stop_gradient = False

        rnn = layers.StaticRNN(main_program=self.main_program)
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

            temp_l = layers.fc(input=x_t,
                               size=self.input_dim,
                               param_attr='W',
                               bias_attr=False,
                               **self.p_info)
            temp_r = layers.fc(input=h_pre,
                               size=self.input_dim,
                               param_attr='U',
                               bias_attr=False,
                               **self.p_info)

            h = layers.sigmoid(
                x=layers.elementwise_add(
                    x=temp_l, y=temp_r, **self.p_info),
                **self.p_info)

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()
Beispiel #36
0
    def test_program_clone_with_parameter(self):
        main_program = Program()
        startup_program = Program()
        kwargs = {
            'main_program': main_program,
            'startup_program': startup_program
        }
        d = layers.data(name='x', shape=[784], dtype='float32', **kwargs)
        hidden = layers.fc(input=d, size=100, **kwargs)
        layers.fc(input=hidden, size=100, **kwargs)

        new_program = main_program.clone()
        self.assertNotEqual(0, len(new_program.blocks[0].all_parameters()))
def encoder_decoder():
    # encoder
    src_word_id = layers.data(name="src_word_id",
                              shape=[1],
                              dtype='int64',
                              lod_level=1)
    src_embedding = layers.embedding(input=src_word_id,
                                     size=[dict_size, word_dim],
                                     dtype='float32',
                                     is_sparse=IS_SPARSE,
                                     param_attr=fluid.ParamAttr(name='vemb'))

    fc1 = fluid.layers.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
    lstm_hidden0, lstm_0 = layers.dynamic_lstm(input=fc1, size=hidden_dim * 4)
    encoder_out = layers.sequence_pool(input=lstm_hidden0, pool_type="last")

    # decoder
    trg_language_word = layers.data(name="target_language_word",
                                    shape=[1],
                                    dtype='int64',
                                    lod_level=1)
    trg_embedding = layers.embedding(input=trg_language_word,
                                     size=[dict_size, word_dim],
                                     dtype='float32',
                                     is_sparse=IS_SPARSE,
                                     param_attr=fluid.ParamAttr(name='vemb'))

    rnn = fluid.layers.DynamicRNN()
    with rnn.block():
        current_word = rnn.step_input(trg_embedding)
        mem = rnn.memory(init=encoder_out)
        fc1 = fluid.layers.fc(input=[current_word, mem],
                              size=decoder_size,
                              act='tanh')
        out = fluid.layers.fc(input=fc1, size=target_dict_dim, act='softmax')
        rnn.update_memory(mem, fc1)
        rnn.output(out)

    return rnn()
Beispiel #38
0
    def test_program_clone_with_parameter(self):
        main_program = Program()
        startup_program = Program()
        kwargs = {
            'main_program': main_program,
            'startup_program': startup_program
        }
        d = layers.data(name='x', shape=[784], dtype='float32', **kwargs)
        hidden = layers.fc(input=d, size=100, **kwargs)
        layers.fc(input=hidden, size=100, **kwargs)

        new_program = main_program.clone()
        self.assertNotEqual(0, len(new_program.blocks[0].all_parameters()))
    def create_rnn_op(self):
        x = layers.data(shape=[self.sent_len, self.batch_size, self.input_dim],
                        dtype='float32',
                        name='x',
                        append_batch_size=False,
                        **self.p_info)
        x.stop_gradient = False
        h_boot = layers.data(shape=[self.input_dim],
                             dtype='float32',
                             name='h_boot',
                             **self.p_info)
        h_boot.stop_gradient = False

        rnn = layers.StaticRNN(main_program=self.main_program)
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

            temp_l = layers.fc(input=x_t,
                               size=self.input_dim,
                               param_attr='W',
                               bias_attr=False,
                               **self.p_info)
            temp_r = layers.fc(input=h_pre,
                               size=self.input_dim,
                               param_attr='U',
                               bias_attr=False,
                               **self.p_info)

            h = layers.sigmoid(x=layers.elementwise_add(x=temp_l,
                                                        y=temp_r,
                                                        **self.p_info),
                               **self.p_info)

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()
Beispiel #40
0
    def create_rnn_op(self):
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
            name='x',
            append_batch_size=False,
            **self.p_info)
        x.stop_gradient = False
        h_boot1 = layers.data(
            shape=[self.batch_size, self.input_dim],
            dtype='float32',
            name='h_boot1',
            append_batch_size=False,
            **self.p_info)
        h_boot1.stop_gradient = False
        h_boot2 = layers.data(
            shape=[self.batch_size, self.input_dim],
            dtype='float32',
            name='h_boot2',
            append_batch_size=False,
            **self.p_info)
        h_boot2.stop_gradient = False

        rnn = layers.StaticRNN(main_program=self.main_program)
        with rnn.step():
            h_pre1 = rnn.memory(init=h_boot1)
            h_pre2 = rnn.memory(init=h_boot2)
            x_t = rnn.step_input(x)

            mem1 = layers.scale(x=h_pre1, scale=1.0, **self.p_info)
            mem2 = layers.scale(x=h_pre2, scale=1.0, **self.p_info)
            out = layers.sums(input=[mem1, x_t, mem2], **self.p_info)

            rnn.update_memory(h_pre1, mem1)
            rnn.update_memory(h_pre2, mem2)
            rnn.output(out)

        return rnn()
def model():
    usr_combined_features = get_usr_combined_features()
    mov_combined_features = get_mov_combined_features()

    # need cos sim
    inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features)

    label = layers.data(name='score', shape=[1], dtype='float32')

    square_cost = layers.square_error_cost(input=inference, label=label)

    avg_cost = layers.mean(x=square_cost)

    return avg_cost
def encoder_decoder():
    # encoder
    src_word_id = layers.data(
        name="src_word_id", shape=[1], dtype='int64', lod_level=1)
    src_embedding = layers.embedding(
        input=src_word_id,
        size=[dict_size, word_dim],
        dtype='float32',
        is_sparse=IS_SPARSE,
        param_attr=fluid.ParamAttr(name='vemb'))

    fc1 = fluid.layers.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
    lstm_hidden0, lstm_0 = layers.dynamic_lstm(input=fc1, size=hidden_dim * 4)
    encoder_out = layers.sequence_pool(input=lstm_hidden0, pool_type="last")

    # decoder
    trg_language_word = layers.data(
        name="target_language_word", shape=[1], dtype='int64', lod_level=1)
    trg_embedding = layers.embedding(
        input=trg_language_word,
        size=[dict_size, word_dim],
        dtype='float32',
        is_sparse=IS_SPARSE,
        param_attr=fluid.ParamAttr(name='vemb'))

    rnn = fluid.layers.DynamicRNN()
    with rnn.block():
        current_word = rnn.step_input(trg_embedding)
        mem = rnn.memory(init=encoder_out)
        fc1 = fluid.layers.fc(input=[current_word, mem],
                              size=decoder_size,
                              act='tanh')
        out = fluid.layers.fc(input=fc1, size=target_dict_dim, act='softmax')
        rnn.update_memory(mem, fc1)
        rnn.output(out)

    return rnn()
Beispiel #43
0
    def test_lod_rank_table(self):
        x = data(name='x', shape=[100])
        cpu = core.CPUPlace()
        rank_table = lod_rank_table(x=x, level=1)
        rank_table.persistable = True
        exe = Executor(cpu)
        scope = core.Scope()

        tensor = core.LoDTensor()
        tensor.set(numpy.random.random(size=(17, 100)), cpu)
        tensor.set_lod([[0, 1, 3], [0, 5, 6, 7], [0, 3, 4, 9, 10, 13, 16, 17]])
        exe.run(scope=scope, feed={'x': tensor})
        var = scope.find_var(rank_table.name)
        table = var.get_lod_rank_table()
        self.assertEqual([(0, 5), (1, 1), (2, 1)], table.items())
def model():
    usr_combined_features = get_usr_combined_features()
    mov_combined_features = get_mov_combined_features()

    # need cos sim
    inference = layers.cos_sim(X=usr_combined_features,
                               Y=mov_combined_features)

    label = layers.data(name='score', shape=[1], dtype='float32')

    square_cost = layers.square_error_cost(input=inference, label=label)

    avg_cost = layers.mean(x=square_cost)

    return avg_cost
Beispiel #45
0
    def test_nvprof(self):
        if not fluid.core.is_compile_gpu():
            return
        epoc = 8
        dshape = [4, 3, 28, 28]
        data = layers.data(name='data', shape=[3, 28, 28], dtype='float32')
        conv = layers.conv2d(data, 20, 3, stride=[1, 1], padding=[1, 1])

        place = fluid.GPUPlace(0)
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof:
            for i in range(epoc):
                input = np.random.random(dshape).astype('float32')
                exe.run(fluid.default_main_program(), feed={'data': input})
    def create_rnn_op(self):
        x = layers.data(shape=[self.sent_len, self.batch_size, self.input_dim],
                        dtype='float32',
                        name='x',
                        append_batch_size=False,
                        **self.p_info)
        x.stop_gradient = False

        rnn = layers.StaticRNN(main_program=self.main_program)
        with rnn.step():
            mem_pre = rnn.memory(shape=[-1, self.input_dim], batch_ref=x)
            x_t = rnn.step_input(x)
            mem = layers.elementwise_add(x=mem_pre, y=x_t, **self.p_info)
            rnn.update_memory(mem_pre, mem)
            rnn.output(mem)

        return rnn()
Beispiel #47
0
    def create_rnn_op(self):
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
            name='x',
            append_batch_size=False,
            **self.p_info)
        x.stop_gradient = False

        rnn = layers.StaticRNN(main_program=self.main_program)
        with rnn.step():
            mem_pre = rnn.memory(shape=[-1, self.input_dim], batch_ref=x)
            x_t = rnn.step_input(x)
            mem = layers.elementwise_add(x=mem_pre, y=x_t, **self.p_info)
            rnn.update_memory(mem_pre, mem)
            rnn.output(mem)

        return rnn()
def main():
    rnn_out = encoder_decoder()
    label = layers.data(name="target_language_next_word",
                        shape=[1],
                        dtype='int64',
                        lod_level=1)
    cost = layers.cross_entropy(input=rnn_out, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4)
    optimizer.minimize(avg_cost)

    train_data = paddle.batch(paddle.reader.shuffle(
        paddle.dataset.wmt14.train(dict_size), buf_size=1000),
                              batch_size=batch_size)

    place = core.CPUPlace()
    exe = Executor(place)

    exe.run(framework.default_startup_program())

    batch_id = 0
    for pass_id in xrange(2):
        for data in train_data():
            word_data = to_lodtensor(map(lambda x: x[0], data), place)
            trg_word = to_lodtensor(map(lambda x: x[1], data), place)
            trg_word_next = to_lodtensor(map(lambda x: x[2], data), place)
            outs = exe.run(framework.default_main_program(),
                           feed={
                               'src_word_id': word_data,
                               'target_language_word': trg_word,
                               'target_language_next_word': trg_word_next
                           },
                           fetch_list=[avg_cost])
            avg_cost_val = np.array(outs[0])
            print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
                  " avg_cost=" + str(avg_cost_val))
            if batch_id > 3:
                exit(0)
            batch_id += 1
def main():
    rnn_out = encoder_decoder()
    label = layers.data(
        name="target_language_next_word", shape=[1], dtype='int64', lod_level=1)
    cost = layers.cross_entropy(input=rnn_out, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4)
    optimizer.minimize(avg_cost)

    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
        batch_size=batch_size)

    place = core.CPUPlace()
    exe = Executor(place)

    exe.run(framework.default_startup_program())

    batch_id = 0
    for pass_id in xrange(2):
        for data in train_data():
            word_data = to_lodtensor(map(lambda x: x[0], data), place)
            trg_word = to_lodtensor(map(lambda x: x[1], data), place)
            trg_word_next = to_lodtensor(map(lambda x: x[2], data), place)
            outs = exe.run(framework.default_main_program(),
                           feed={
                               'src_word_id': word_data,
                               'target_language_word': trg_word,
                               'target_language_next_word': trg_word_next
                           },
                           fetch_list=[avg_cost])
            avg_cost_val = np.array(outs[0])
            print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
                  " avg_cost=" + str(avg_cost_val))
            if batch_id > 3:
                exit(0)
            batch_id += 1
    def test_fit_line_inference_model(self):
        MODEL_DIR = "./tmp/inference_model"

        init_program = Program()
        program = Program()
        x = layers.data(
            name='x',
            shape=[2],
            dtype='float32',
            main_program=program,
            startup_program=init_program)
        y = layers.data(
            name='y',
            shape=[1],
            dtype='float32',
            main_program=program,
            startup_program=init_program)

        y_predict = layers.fc(input=x,
                              size=1,
                              act=None,
                              main_program=program,
                              startup_program=init_program)

        cost = layers.square_error_cost(
            input=y_predict,
            label=y,
            main_program=program,
            startup_program=init_program)
        avg_cost = layers.mean(
            x=cost, main_program=program, startup_program=init_program)

        sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
        sgd_optimizer.minimize(avg_cost, init_program)

        place = core.CPUPlace()
        exe = executor.Executor(place)

        exe.run(init_program, feed={}, fetch_list=[])

        for i in xrange(100):
            tensor_x = np.array(
                [[1, 1], [1, 2], [3, 4], [5, 2]]).astype("float32")
            tensor_y = np.array([[-2], [-3], [-7], [-7]]).astype("float32")

            exe.run(program,
                    feed={'x': tensor_x,
                          'y': tensor_y},
                    fetch_list=[avg_cost])

        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
        expected = exe.run(program,
                           feed={'x': tensor_x,
                                 'y': tensor_y},
                           fetch_list=[avg_cost])[0]

        reload(executor)  # reload to build a new scope
        exe = executor.Executor(place)

        [infer_prog, feed_var_names, fetch_vars] = load_inference_model(
            MODEL_DIR, exe)

        outs = exe.run(
            infer_prog,
            feed={feed_var_names[0]: tensor_x,
                  feed_var_names[1]: tensor_y},
            fetch_list=fetch_vars)
        actual = outs[0]

        self.assertEqual(feed_var_names, ["x", "y"])
        self.assertEqual(len(fetch_vars), 1)
        self.assertEqual(str(fetch_vars[0]), str(avg_cost))
        self.assertEqual(expected, actual)
    def test_read_write(self):
        x = [
            layers.data(name='x0', shape=[100]),
            layers.data(name='x1', shape=[100]),
            layers.data(name='x2', shape=[100])
        ]

        for each_x in x:
            each_x.stop_gradient = False

        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = False
        arr = layers.array_write(x=x[0], i=i)
        i = layers.increment(x=i)
        arr = layers.array_write(x=x[1], i=i, array=arr)
        i = layers.increment(x=i)
        arr = layers.array_write(x=x[2], i=i, array=arr)

        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = False
        a0 = layers.array_read(array=arr, i=i)
        i = layers.increment(x=i)
        a1 = layers.array_read(array=arr, i=i)
        i = layers.increment(x=i)
        a2 = layers.array_read(array=arr, i=i)

        mean_a0 = layers.mean(x=a0)
        mean_a1 = layers.mean(x=a1)
        mean_a2 = layers.mean(x=a2)

        a_sum = layers.sums(input=[mean_a0, mean_a1, mean_a2])

        mean_x0 = layers.mean(x=x[0])
        mean_x1 = layers.mean(x=x[1])
        mean_x2 = layers.mean(x=x[2])

        x_sum = layers.sums(input=[mean_x0, mean_x1, mean_x2])

        scope = core.Scope()
        cpu = core.CPUPlace()

        exe = Executor(cpu)

        tensor = numpy.random.random(size=(100, 100)).astype('float32')

        outs = exe.run(feed={
            'x0': tensor,
            'x1': tensor,
            'x2': tensor
        },
                       fetch_list=[a_sum, x_sum],
                       scope=scope)
        self.assertEqual(outs[0], outs[1])

        total_sum = layers.sums(input=[a_sum, x_sum])
        total_sum_scaled = layers.scale(x=total_sum, scale=1 / 6.0)

        append_backward_ops(total_sum_scaled)

        g_vars = map(default_main_program().global_block().var,
                     [each_x.name + "@GRAD" for each_x in x])
        g_out = [
            item.sum() for item in exe.run(feed={
                'x0': tensor,
                'x1': tensor,
                'x2': tensor
            },
                                           fetch_list=g_vars)
        ]
        g_out_sum = numpy.array(g_out).sum()

        # since our final gradient is 1 and the neural network are all linear
        # with mean_op.
        # the input gradient should also be 1
        self.assertAlmostEqual(1.0, g_out_sum, delta=0.1)
Beispiel #52
0
    def test_raw_api(self):
        kwargs = {'startup_program': Program(), 'main_program': Program()}
        image = layers.data(name='x', shape=[784], dtype='float32', **kwargs)

        label = layers.data(name='y', shape=[1], dtype='int64', **kwargs)

        limit = layers.fill_constant_batch_size_like(input=label,
                                                     dtype='int64',
                                                     shape=[1],
                                                     value=5.0,
                                                     **kwargs)

        cond = layers.less_than(x=label, y=limit, **kwargs)
        true_image, false_image = layers.split_lod_tensor(input=image,
                                                          mask=cond,
                                                          **kwargs)

        true_out = layers.create_tensor(dtype='float32', **kwargs)
        true_cond = layers.ConditionalBlock([true_image], **kwargs)

        with true_cond.block():
            hidden = layers.fc(input=true_image,
                               size=100,
                               act='tanh',
                               **kwargs)
            prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs)
            layers.assign(input=prob, output=true_out, **kwargs)

        false_out = layers.create_tensor(dtype='float32', **kwargs)
        false_cond = layers.ConditionalBlock([false_image], **kwargs)

        with false_cond.block():
            hidden = layers.fc(input=false_image,
                               size=200,
                               act='tanh',
                               **kwargs)
            prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs)
            layers.assign(input=prob, output=false_out, **kwargs)

        prob = layers.merge_lod_tensor(in_true=true_out,
                                       in_false=false_out,
                                       mask=cond,
                                       x=image,
                                       **kwargs)
        loss = layers.cross_entropy(input=prob, label=label, **kwargs)
        avg_loss = layers.mean(x=loss, **kwargs)

        optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
        optimizer.minimize(avg_loss, kwargs['startup_program'])

        train_reader = paddle.batch(paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=8192),
                                    batch_size=200)

        place = core.CPUPlace()
        exe = Executor(place)

        exe.run(kwargs['startup_program'])
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for data in train_reader():
                x_data = np.array(map(lambda x: x[0], data)).astype("float32")
                y_data = np.array(map(lambda x: x[1], data)).astype("int64")
                y_data = np.expand_dims(y_data, axis=1)

                outs = exe.run(kwargs['main_program'],
                               feed={
                                   'x': x_data,
                                   'y': y_data
                               },
                               fetch_list=[avg_loss])
                print outs[0]
                if outs[0] < 1.0:
                    return
        self.assertFalse(True)
Beispiel #53
0
 def test_conv2d_transpose(self):
     program = Program()
     with program_guard(program):
         img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
         layers.conv2d_transpose(input=img, num_filters=10, output_size=28)
     print(str(program))
    def test_read_write(self):
        x = [
            layers.data(
                name='x0', shape=[100]), layers.data(
                    name='x1', shape=[100]), layers.data(
                        name='x2', shape=[100])
        ]

        for each_x in x:
            each_x.stop_gradient = False

        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = False
        arr = layers.array_write(x=x[0], i=i)
        i = layers.increment(x=i)
        arr = layers.array_write(x=x[1], i=i, array=arr)
        i = layers.increment(x=i)
        arr = layers.array_write(x=x[2], i=i, array=arr)

        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = False
        a0 = layers.array_read(array=arr, i=i)
        i = layers.increment(x=i)
        a1 = layers.array_read(array=arr, i=i)
        i = layers.increment(x=i)
        a2 = layers.array_read(array=arr, i=i)

        mean_a0 = layers.mean(x=a0)
        mean_a1 = layers.mean(x=a1)
        mean_a2 = layers.mean(x=a2)

        a_sum = layers.sums(input=[mean_a0, mean_a1, mean_a2])

        mean_x0 = layers.mean(x=x[0])
        mean_x1 = layers.mean(x=x[1])
        mean_x2 = layers.mean(x=x[2])

        x_sum = layers.sums(input=[mean_x0, mean_x1, mean_x2])

        scope = core.Scope()
        cpu = core.CPUPlace()

        exe = Executor(cpu)

        tensor = numpy.random.random(size=(100, 100)).astype('float32')

        outs = exe.run(feed={'x0': tensor,
                             'x1': tensor,
                             'x2': tensor},
                       fetch_list=[a_sum, x_sum],
                       scope=scope)
        self.assertEqual(outs[0], outs[1])

        total_sum = layers.sums(input=[a_sum, x_sum])
        total_sum_scaled = layers.scale(x=total_sum, scale=1 / 6.0)

        append_backward_ops(total_sum_scaled)

        g_vars = map(default_main_program().global_block().var,
                     [each_x.name + "@GRAD" for each_x in x])
        g_out = [
            item.sum()
            for item in exe.run(
                feed={'x0': tensor,
                      'x1': tensor,
                      'x2': tensor},
                fetch_list=g_vars)
        ]
        g_out_sum = numpy.array(g_out).sum()

        # since our final gradient is 1 and the neural network are all linear
        # with mean_op.
        # the input gradient should also be 1
        self.assertAlmostEqual(1.0, g_out_sum, delta=0.1)
Beispiel #55
0
import paddle.v2.fluid.evaluator as evaluator
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.nets as nets
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.optimizer import AdamOptimizer
from paddle.v2.fluid.initializer import NormalInitializer
import numpy as np
import time

BATCH_SIZE = 128
PASS_NUM = 5
SEED = 1
DTYPE = "float32"

images = layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
label = layers.data(name='label', shape=[1], dtype='int64')
conv_pool_1 = nets.simple_img_conv_pool(input=images,
                                        filter_size=5,
                                        num_filters=20,
                                        pool_size=2,
                                        pool_stride=2,
                                        act="relu")
conv_pool_2 = nets.simple_img_conv_pool(input=conv_pool_1,
                                        filter_size=5,
                                        num_filters=50,
                                        pool_size=2,
                                        pool_stride=2,
                                        act="relu")

# TODO(dzhwinter) : refine the initializer and random seed settting
    def test_raw_api(self):
        kwargs = {'startup_program': Program(), 'main_program': Program()}
        image = layers.data(name='x', shape=[784], dtype='float32', **kwargs)

        label = layers.data(name='y', shape=[1], dtype='int64', **kwargs)

        limit = layers.fill_constant_batch_size_like(
            input=label, dtype='int64', shape=[1], value=5.0, **kwargs)

        cond = layers.less_than(x=label, y=limit, **kwargs)
        true_image, false_image = layers.split_lod_tensor(
            input=image, mask=cond, **kwargs)

        true_out = layers.create_tensor(dtype='float32', **kwargs)
        true_cond = layers.ConditionalBlock([true_image], **kwargs)

        with true_cond.block():
            hidden = layers.fc(input=true_image, size=100, act='tanh', **kwargs)
            prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs)
            layers.assign(input=prob, output=true_out, **kwargs)

        false_out = layers.create_tensor(dtype='float32', **kwargs)
        false_cond = layers.ConditionalBlock([false_image], **kwargs)

        with false_cond.block():
            hidden = layers.fc(input=false_image,
                               size=200,
                               act='tanh',
                               **kwargs)
            prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs)
            layers.assign(input=prob, output=false_out, **kwargs)

        prob = layers.merge_lod_tensor(
            in_true=true_out, in_false=false_out, mask=cond, x=image, **kwargs)
        loss = layers.cross_entropy(input=prob, label=label, **kwargs)
        avg_loss = layers.mean(x=loss, **kwargs)

        optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
        optimizer.minimize(avg_loss, kwargs['startup_program'])

        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=8192),
            batch_size=200)

        place = core.CPUPlace()
        exe = Executor(place)

        exe.run(kwargs['startup_program'])
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for data in train_reader():
                x_data = np.array(map(lambda x: x[0], data)).astype("float32")
                y_data = np.array(map(lambda x: x[1], data)).astype("int64")
                y_data = np.expand_dims(y_data, axis=1)

                outs = exe.run(kwargs['main_program'],
                               feed={'x': x_data,
                                     'y': y_data},
                               fetch_list=[avg_loss])
                print outs[0]
                if outs[0] < 1.0:
                    return
        self.assertFalse(True)
Beispiel #57
0
    def test_ifelse(self):
        kwargs = {'startup_program': Program(), 'main_program': Program()}
        image = layers.data(name='x', shape=[784], dtype='float32', **kwargs)

        label = layers.data(name='y', shape=[1], dtype='int64', **kwargs)

        limit = layers.fill_constant_batch_size_like(input=label,
                                                     dtype='int64',
                                                     shape=[1],
                                                     value=5.0,
                                                     **kwargs)

        cond = layers.less_than(x=label, y=limit, **kwargs)

        ie = layers.IfElse(cond, **kwargs)

        with ie.true_block():
            true_image = ie.input(image)
            hidden = layers.fc(input=true_image,
                               size=100,
                               act='tanh',
                               **kwargs)
            prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs)
            ie.output(prob)

        with ie.false_block():
            false_image = ie.input(image)
            hidden = layers.fc(input=false_image,
                               size=200,
                               act='tanh',
                               **kwargs)
            prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs)
            ie.output(prob)

        prob = ie()
        loss = layers.cross_entropy(input=prob[0], label=label, **kwargs)
        avg_loss = layers.mean(x=loss, **kwargs)

        optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
        optimizer.minimize(avg_loss, kwargs['startup_program'])
        train_reader = paddle.batch(paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=8192),
                                    batch_size=200)

        place = core.CPUPlace()
        exe = Executor(place)

        exe.run(kwargs['startup_program'])
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for data in train_reader():
                x_data = np.array(map(lambda x: x[0], data)).astype("float32")
                y_data = np.array(map(lambda x: x[1], data)).astype("int64")
                y_data = y_data.reshape((y_data.shape[0], 1))

                outs = exe.run(kwargs['main_program'],
                               feed={
                                   'x': x_data,
                                   'y': y_data
                               },
                               fetch_list=[avg_loss])
                print outs[0]
                if outs[0] < 1.0:
                    return
        self.assertFalse(True)